Ganz J, Puget C, Ammeling J, Parlak E, Kiupel M, Bertram CA, Breininger K, Klopfleisch R, Aubreville M (2024)
Publication Language: English
Publication Type: Conference contribution, Conference Contribution
Publication year: 2024
Publisher: Springer Vieweg
Series: Informatik aktuell
City/Town: Wiesbaden
Pages Range: 137-142
Conference Proceedings Title: Bildverarbeitung für die Medizin 2024. BVM 2024
ISBN: 9783658440367
DOI: 10.1007/978-3-658-44037-4_41
Deep multiple instance learning is a popular method for classifying whole slide images, but it remains unclear how robust such models are against scanner-induced domain shifts. In this work, we studied this problem based on the classification of the mutational status of the c-Kit gene from whole slide images of canine mast cell tumors obtained with three different scanners. Furthermore, we investigated the possibility of utilizing image augmentation during feature extraction to overcome domain shifts. Our findings suggest that a notable domain shift exists between models trained on different scanners. Nevertheless, the use of image augmentations during feature extraction failed to address this domain shift and had no positive effect on in-domain performance.
APA:
Ganz, J., Puget, C., Ammeling, J., Parlak, E., Kiupel, M., Bertram, C.A.,... Aubreville, M. (2024). Assessment of Scanner Domain Shifts in Deep Multiple Instance Learning. In Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2024. BVM 2024 (pp. 137-142). Erlangen, DE: Wiesbaden: Springer Vieweg.
MLA:
Ganz, Jonathan, et al. "Assessment of Scanner Domain Shifts in Deep Multiple Instance Learning." Proceedings of the German Conference on Medical Image Computing, BVM 2024, Erlangen Ed. Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff, Wiesbaden: Springer Vieweg, 2024. 137-142.
BibTeX: Download