Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction

Fürnrohr F, Wetzl J, Vornehm M, Giese D, Knoll F (2024)


Publication Type: Conference contribution

Publication year: 2024

Journal

Publisher: Springer Vieweg

Series: Informatik aktuell

City/Town: Wiesbaden

Pages Range: 316-321

Conference Proceedings Title: Bildverarbeitung für die Medizin 2024

Event location: Erlangen DE

ISBN: 9783658440367

DOI: 10.1007/978-3-658-44037-4_81

Abstract

Variational Networks are a common approach in deep learning-based accelerated MR reconstruction. Due to their architecture, they may however fail in enforcing data consistency.We propose an adjustment to the Variational Network, integrating an optimization block that ensures consistency with the measured kspace points. We show the superiority of the method for zero-shot self-supervised 3D reconstruction quantitatively on retrospectively undersampled knee-data, and qualitatively in prospectively undersampled MR angiography images.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Fürnrohr, F., Wetzl, J., Vornehm, M., Giese, D., & Knoll, F. (2024). Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction. In Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2024 (pp. 316-321). Erlangen, DE: Wiesbaden: Springer Vieweg.

MLA:

Fürnrohr, Florian, et al. "Data Consistent Variational Networks for Zero-shot Self-supervised MR Reconstruction." Proceedings of the Bildverarbeitung für die Medizin 2024, Erlangen Ed. Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff, Wiesbaden: Springer Vieweg, 2024. 316-321.

BibTeX: Download