Comparative Analysis of Radiomic Features and Gene Expression Profiles in Histopathology Data using Graph Neural Networks

Rivera Monroy L, Rist L, Eberhardt M, Ostalecki C, Bauer A, Vera J, Breininger K, Maier A (2024)


Publication Type: Conference contribution

Publication year: 2024

Journal

Publisher: Springer Link

Edited Volumes: Bildverarbeitung für die Medizin 2024

Pages Range: 160-165

Event location: Erlangen DE

ISBN: 9783658440367

DOI: 10.1007/978-3-658-44037-4_49

Abstract

This study leverages graph neural networks to integrate MELC data with Radiomic-extracted features for melanoma classification, focusing on cellwise analysis. It assesses the effectiveness of gene expression profiles and Radiomic features, revealing that Radiomic features, particularly when combined with UMAP for dimensionality reduction, significantly enhance classification performance. Notably, using Radiomics contributes to increased diagnostic accuracy and computational efficiency, as it allows for the extraction of critical data from fewer stains, thereby reducing operational costs. This methodology marks an advancement in computational dermatology for melanoma cell classification, setting the stage for future research and potential developments.

Authors with CRIS profile

How to cite

APA:

Rivera Monroy, L., Rist, L., Eberhardt, M., Ostalecki, C., Bauer, A., Vera, J.,... Maier, A. (2024). Comparative Analysis of Radiomic Features and Gene Expression Profiles in Histopathology Data using Graph Neural Networks. In Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff (Eds.), Proceedings of the Bildverarbeitung für die Medizin 2024 (pp. 160-165). Erlangen, DE: Springer Link.

MLA:

Rivera Monroy, Luis, et al. "Comparative Analysis of Radiomic Features and Gene Expression Profiles in Histopathology Data using Graph Neural Networks." Proceedings of the Bildverarbeitung für die Medizin 2024, Erlangen Ed. Andreas Maier, Thomas M. Deserno, Heinz Handels, Klaus Maier-Hein, Christoph Palm, Thomas Tolxdorff, Springer Link, 2024. 160-165.

BibTeX: Download