Monte-carlo simulation of the effective lunar aperture for detection of ultra-high energy neutrinos with LOFAR

Krampah GK, Buitink S, Bray JD, Corstanje A, Desmet M, Falcke H, Hare BM, Hörandel JR, Huege T, Jhansi VB, Karastathis N, Mulrey K, Mitra P, Nelles A, Pandya H, Scholten O, ter Veen S, Thoudam S, Winchen T (2023)


Publication Type: Journal article

Publication year: 2023

Journal

Book Volume: 83

Article Number: 1146

Journal Issue: 12

DOI: 10.1140/epjc/s10052-023-12348-3

Abstract

Ultra-high-energy (UHE) cosmic neutrinos interacting with the Moon’s regolith generate particle showers that emit Askaryan radiation. This radiation can be observed from the Earth using ground-based radio telescopes like LOFAR. We simulate the effective detection aperture for UHE neutrinos hitting the Moon. Under the same assumptions, results from this work are in good agreement with previous analytic parameterizations and Monte Carlo codes. The dependence of the effective detection aperture on the observing parameters, such as observing frequency and minimum detection threshold, and lunar characteristics like surface topography have been studied. Using a Monte Carlo simulation, we find that the detectable neutrino energy threshold is lowered when we include a realistic treatment of the inelasticity, transmission coefficient, and surface roughness. Lunar surface roughness at large scales enhances the total aperture for higher observation frequencies (ν≥1GHz) but has no significant effect on the LOFAR aperture. However, roughness at scales small compared to the wavelength reduces the aperture at all frequencies.

Involved external institutions

How to cite

APA:

Krampah, G.K., Buitink, S., Bray, J.D., Corstanje, A., Desmet, M., Falcke, H.,... Winchen, T. (2023). Monte-carlo simulation of the effective lunar aperture for detection of ultra-high energy neutrinos with LOFAR. European Physical Journal C: Particles and Fields, 83(12). https://dx.doi.org/10.1140/epjc/s10052-023-12348-3

MLA:

Krampah, G. K., et al. "Monte-carlo simulation of the effective lunar aperture for detection of ultra-high energy neutrinos with LOFAR." European Physical Journal C: Particles and Fields 83.12 (2023).

BibTeX: Download