Towards Pressure Sensors Based on Polymer Planar Bragg Gratings

Kefer S, Pape N, Gries N, Roth GL, Schmauß B, Hellmann R (2023)


Publication Type: Conference contribution

Publication year: 2023

Publisher: SPIE

Book Volume: 12418

Conference Proceedings Title: Proceedings of SPIE - The International Society for Optical Engineering

Event location: San Francisco, CA, USA

ISBN: 9781510659414

DOI: 10.1117/12.2648723

Abstract

While Bragg grating-based optical devices have shown promising performances for pressure sensing applications, their sensitivity, especially in the low-pressure regime, is unsatisfying and needs to be optimized by elaborate designs, such as cantilevers or other extrinsic mechanical transducers. This contribution demonstrates and discusses a novel concept for optical pressure sensors based on polymer planar Bragg gratings. Waveguide and Bragg grating are fabricated underneath the surface of a temperature-stable and humidity-insensitive cyclic olefin copolymer substrate by means of a femtosecond laser. Based on the employed direct-writing procedure, in combination with adaptive, in-situ beam shaping with a spatial light modulator, writing depth, i.e., location of the photonic structures within the substrate, as well as Bragg grating periodicity and positioning can be deliberately chosen. Afterwards, the polymer substrate is post-processed with a high-precision micro mill, so a diaphragm comprising the integrated photonic structures is generated. The resulting diaphragm exhibits a thickness of 300 µm and a diameter of 10 mm. Finally, the optical sensor is packaged and sealed to form an air-filled gas pocket underneath the diaphragm. Deformations of the diaphragm by external pressure changes translate to strain variations along the waveguide axis and thus perturb the Bragg grating period. This leads to changes in the grating's wavelength of main reflection, which can be evaluated in order to quantify the relative external pressure. With this straightforward optical sensor concept, pressure sensitivities up to 39 pm kPa-1, within relative pressures ranges from -78 kPa to 372 kPa, are achieved.

Authors with CRIS profile

Additional Organisation(s)

Involved external institutions

How to cite

APA:

Kefer, S., Pape, N., Gries, N., Roth, G.L., Schmauß, B., & Hellmann, R. (2023). Towards Pressure Sensors Based on Polymer Planar Bragg Gratings. In William M. Shensky, Ileana Rau, Okihiro Sugihara (Eds.), Proceedings of SPIE - The International Society for Optical Engineering. San Francisco, CA, USA: SPIE.

MLA:

Kefer, Stefan, et al. "Towards Pressure Sensors Based on Polymer Planar Bragg Gratings." Proceedings of the Organic Photonic Materials and Devices XXV 2023, San Francisco, CA, USA Ed. William M. Shensky, Ileana Rau, Okihiro Sugihara, SPIE, 2023.

BibTeX: Download