High reproducible CO2 laser spliced fiber-collimator for a space borne laser system

Böhme S, Fabian S, Kamm A, Peschel T, Beckert E, Tünnermann A, Nicklaus K, Dehne M (2017)


Publication Type: Conference contribution

Publication year: 2017

Journal

Publisher: SPIE

Book Volume: 10562

Conference Proceedings Title: Proceedings of SPIE - The International Society for Optical Engineering

Event location: Biarritz, FRA

ISBN: 9781510616134

DOI: 10.1117/12.2296211

Abstract

The Gravity Recovery and Climate Experiment Follow-On (GRACE FO) is a space borne mission to map variations in the earth's gravity field with an even greater accuracy than the first GRACE mission. GRACE FO is a collaborative project of NASA (USA) and GFZ (Germany) scheduled for launch in 2017. On GRACE the gravity field is reconstructed from a measurement of the distance variation between two satellites following each other in 200 km distance by use of a microwave ranging instrument. On GRACE FO a laser ranging interferometer (LRI) is added as a demonstrator in addition to the microwave. Moving from microwave range to optical wavelengths provides an improvement in distance measurement noise from some μm/√Hz to 80 nm/√Hz down to 0.01 Hz frequency. The criteria on the beam delivery system are demanding, in particular with respect to laser beam quality, wave front deviation and pointing as well as thermal and mechanical stability. Conventionally such a system can be manufactured with at least two special mounted lenses or an aspheric lens aligned with respect to the fiber end. However, the alignment of this optical system must be maintained throughout the mission, including the critical launch phase and a wide temperature range in orbit, leading to high alignment effort and athermal design requirements. The monolithic fiber-collimator presented here provides excellent optical and thermal and mechanical performance. It is a part of the LRI and located on the Optical Bench Assembly (OBA) which has already been described in [1, 3].

Involved external institutions

How to cite

APA:

Böhme, S., Fabian, S., Kamm, A., Peschel, T., Beckert, E., Tünnermann, A.,... Dehne, M. (2017). High reproducible CO2 laser spliced fiber-collimator for a space borne laser system. In Bruno Cugny, Nikos Karafolas, Zoran Sodnik (Eds.), Proceedings of SPIE - The International Society for Optical Engineering. Biarritz, FRA: SPIE.

MLA:

Böhme, S., et al. "High reproducible CO2 laser spliced fiber-collimator for a space borne laser system." Proceedings of the International Conference on Space Optics, ICSO 2016, Biarritz, FRA Ed. Bruno Cugny, Nikos Karafolas, Zoran Sodnik, SPIE, 2017.

BibTeX: Download