Rydberg Atom-Enabled Spectroscopy of Polar Molecules via Förster Resonance Energy Transfer

Patsch S, Zeppenfeld M, Koch C (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 13

Pages Range: 10728-10733

Journal Issue: 46

DOI: 10.1021/acs.jpclett.2c02521

Abstract

Non-radiative energy transfer between a Rydberg atom and a polar molecule can be controlled by a static electric field. Here, we show how to exploit this control for state-resolved, non-destructive detection and spectroscopy of the molecules, where the lineshape reflects the type of molecular transition. Using the example of ammonia, we identify the conditions for collision-mediated spectroscopy in terms of the required electric field strengths, relative velocities, and molecular densities. Rydberg atom-enabled spectroscopy is feasible with current experimental technology, providing a versatile detection method as a basic building block for applications of polar molecules in quantum technologies and chemical reaction studies.

Involved external institutions

How to cite

APA:

Patsch, S., Zeppenfeld, M., & Koch, C. (2022). Rydberg Atom-Enabled Spectroscopy of Polar Molecules via Förster Resonance Energy Transfer. Journal of Physical Chemistry Letters, 13(46), 10728-10733. https://dx.doi.org/10.1021/acs.jpclett.2c02521

MLA:

Patsch, Sabrina, Martin Zeppenfeld, and Christiane Koch. "Rydberg Atom-Enabled Spectroscopy of Polar Molecules via Förster Resonance Energy Transfer." Journal of Physical Chemistry Letters 13.46 (2022): 10728-10733.

BibTeX: Download