Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers

Chen G, Wang T, Liu P, Liao Z, Zhong H, Wang G, Zhang P, Yu M, Zschech E, Chen M, Zhang J, Feng X (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 13

Pages Range: 2849-2855

Journal Issue: 9

DOI: 10.1039/d0ee01613f

Abstract

Electrocatalytic oxygen reduction reaction (ORR) is the vital process for next-generation electrochemical energy storage and conversion technologies, e.g., metal-air batteries and fuel cells. During the ORR, the O2∗ and O∗ intermediates principally combine with protons to form OOH∗ and OH∗ species, respectively, which are the proton-coupled electron transfer processes. Unfortunately, under alkaline conditions, the protons are essentially generated from the sluggish water dissociation process, which unavoidably limits the ORR kinetics. Herein, we design and synthesize a nitrogen-doped hierarchically porous carbon with homogeneously distributed ultrafine α-MoC nanoparticles (α-MoC/NHPC) as a model electrocatalyst. Theoretical investigations unveil that α-MoC on NHPC could efficiently reduce the energy barrier of the water dissociation process to generate protons, eventually promoting the proton-coupled ORR kinetics. In a 0.1 M KOH aqueous solution, α-MoC/NHPC exhibits excellent ORR performance with a high half-wave potential of 0.88 V (vs. reversible hydrogen electrode), which outperforms those for NHPC and commercial Pt/C. Moreover, as the air electrode in a zinc-air battery, α-MoC/NHPC presents a large peak power density of 200.3 mW cm-2 and long-term stability. Thereby, our approach to engineering proton-feeding centers paves a new avenue towards the understanding of ORR kinetics and the development of high-performance ORR electrocatalysts. This journal is

Involved external institutions

How to cite

APA:

Chen, G., Wang, T., Liu, P., Liao, Z., Zhong, H., Wang, G.,... Feng, X. (2020). Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy and Environmental Science, 13(9), 2849-2855. https://doi.org/10.1039/d0ee01613f

MLA:

Chen, Guangbo, et al. "Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers." Energy and Environmental Science 13.9 (2020): 2849-2855.

BibTeX: Download