Observation of an unexpected negative magnetoresistance in magnetic weyl semimetal Co3Sn2S2

Moghaddam AG, Geishendorf K, Schlitz R, Facio JI, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein STB, Van Den Brink J, Thomas A (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 29

Article Number: 100896

DOI: 10.1016/j.mtphys.2022.100896

Abstract

Time-reversal symmetry breaking allows for a rich set of magneto-transport properties related to electronic topology. Focusing on the magnetic Weyl semimetal Co3Sn2S2, we prepared micro-ribbons and investigated their transverse and longitudinal transport properties from 100 K to 180 K in magnetic fields μ0H up to 2 T. We establish the presence of a magnetoresistance (MR) up to 1% with a strong anisotropy depending the projection of H on the easy-axis magnetization, which exceeds all other magnetoresistive effects. Based on detailed phenomenological modeling, we attribute the observed results with unexpected form of anisotropy to magnon MR resulting from magnon-electron coupling. Moreover, a similar angular dependence is also found in the transverse resistivity which we show to originate from the combination of ordinary Hall and anomalous Hall effects. Thus the interplay of magnetic and topological properties governs the magnetotransport features of this magnetic Weyl system.

Involved external institutions

How to cite

APA:

Moghaddam, A.G., Geishendorf, K., Schlitz, R., Facio, J.I., Vir, P., Shekhar, C.,... Thomas, A. (2022). Observation of an unexpected negative magnetoresistance in magnetic weyl semimetal Co3Sn2S2. Materials Today Physics, 29. https://dx.doi.org/10.1016/j.mtphys.2022.100896

MLA:

Moghaddam, Ali G., et al. "Observation of an unexpected negative magnetoresistance in magnetic weyl semimetal Co3Sn2S2." Materials Today Physics 29 (2022).

BibTeX: Download