Bai W, Peressutti D, Oktay O, Shi W, O'Regan DP, King AP, Rueckert D (2015)
Publication Type: Conference contribution
Publication year: 2015
Publisher: Springer Verlag
Book Volume: 9126
Pages Range: 3-11
Conference Proceedings Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Event location: Maastricht, NLD
ISBN: 9783319203089
DOI: 10.1007/978-3-319-20309-6_1
Motion, together with shape, reflect important aspects of cardiac function. In this work, a new method is proposed for learning of a cardiac motion descriptor from a data-driven perspective. The resulting descriptor can characterise the global motion pattern of the left ventricle with a much lower dimension than the original motion data. It has demonstrated its predictive power on two exemplar classification tasks on a large cohort of 1093 normal subjects.
APA:
Bai, W., Peressutti, D., Oktay, O., Shi, W., O'Regan, D.P., King, A.P., & Rueckert, D. (2015). Learning a global descriptor of cardiac motion from a large cohort of 1000+ normal subjects. In Hans van Assen, Peter Bovendeerd, Hans van Assen, Peter Bovendeerd, Tammo Delhaas, Tammo Delhaas (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 3-11). Maastricht, NLD: Springer Verlag.
MLA:
Bai, Wenjia, et al. "Learning a global descriptor of cardiac motion from a large cohort of 1000+ normal subjects." Proceedings of the 8th International Conference on Functional Imaging and Modeling of the Heart, FIMH 2015, Maastricht, NLD Ed. Hans van Assen, Peter Bovendeerd, Hans van Assen, Peter Bovendeerd, Tammo Delhaas, Tammo Delhaas, Springer Verlag, 2015. 3-11.
BibTeX: Download