Abbasi R, Ackermann M, Adams J, Aggarwal N, Aguilar JA, Ahlers M, Ahrens M, Alameddine JM, Alves Jr AA, Amin NM, Andeen K, Anderson T, Anton G, Arguelles C, Ashida Y, Athanasiadou S, Axani S, Bai X, Balagopal A, Baricevic M, Barwick SW, Basu V, Bay R, Beatty JJ, Becker KH, Tjus JB, Beise J, Bellenghi C, Benda S, Benzvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bontempo F, Book JY, Borowka J, Meneguolo CB, Boser S, Botner O, Bottcher J, Bourbeau E, Braun J, Brinson B, Brostean-Kaiser J, Burley RT, Busse RS, Campana MA, Carnie-Bronca EG, Chen C, Chen Z, Chirkin D, Choi K, Clark BA, Classen L, Coleman A, Collin GH, Connolly A, Conrad JM, Coppin P, Correa P, Countryman S, Cowen DF, Cross R, Dappen C, Dave P, De Clercq C, Delaunay JJ, Lopez DD, Dembinski H, Deoskar K, Desai A, Desiati P, De Vries KD, De Wasseige G, Deyoung T, Diaz A, Diaz-Velez JC, Dittmer M, Dujmovic H, Duvernois MA, Ehrhardt T, Eller P, Engel R, Erpenbeck H, Evans J, Evenson PA, Fan KL, Fazely AR, Fedynitch A, Feigl N, Fiedlschuster S, Fienberg AT, Finley C, Fischer L, Fox D, Franckowiak A, Friedman E, Fritz A, Furst P, Gaisser TK, Gallagher J, Ganster E, Garcia A, Garrappa S, Gerhardt L, Ghadimi A, Glaser C, Glauch T, Glüsenkamp T, Goehlke N, Gonzalez JG, Goswami S, Grant D, Gray SJ, Gregoire T, Griswold S, Guenther C, Gutjahr P, Haack C, Hallgren A, Halliday R, Halve L, Halzen F, Hamdaoui H, Ha Minh M, Hanson K, Hardin J, Harnisch AA, Hatch P, Haungs A, Helbing K, Hellrung J, Henningsen F, Heuermann L, Hickford S, Hill C, Hill GC, Hoffman KD, Hoshina K, Hou W, Huber T, Hultqvist K, Huennefeld M, Hussain R, Hymon K, In S, Iovine N, Ishihara A, Jansson M, Japaridze GS, Jeong M, Jin M, Jones BJP, Kang D, Kang W, Kang X, Kappes A, Kappesser D, Kardum L, Karg T, Karl M, Karle A, Katz U, Kauer M, Kelley JL, Kheirandish A, Kin K, Kiryluk J, Klein SR, Kochocki A, Koirala R, Kolanoski H, Kontrimas T, Koepke L, Kopper C, Koskinen DJ, Koundal P, Kovacevich M, Kowalski M, Kozynets T, Krupczak E, Kun E, Kurahashi N, Lad N, Gualda CL, Larson MJ, Lauber F, Lazar JP, Lee JW, Leonard K, Lincetto M, Liu QR, Liubarska M, Lohfink E, Love C, Mariscal CJL, Lu L, Lucarelli F, Ludwig A, Luszczak W, Lyu Y, Ma WY, Madsen J, Mahn KBM, Makino Y, Mancina S, Sainte WM, Marka S, Marka Z, Marsee M, Martinez-Soler , Maruyama R, Mcelroy T, Mcnally F, Mead J, Meagher K, Mechbal S, Medina A, Meier M, Meighen-Berger S, Merckx Y, Micallef J, Mockler D, Montaruli T, Moore RW, Morse R, Moulai M, Mukherjee T, Naab R, Nagai R, Naumann U, Nayerhoda A, Necker J, Neumann M, Niederhausen H, Nisa MU, Nowicki SC, Pollmann AO, Oehler M, Oeyen B, Olivas A, Orsoe R, Osborn J, Pandya H, Pankova D, Park N, Parker GK, Paudel EN, Paul L, De Los Heros CP, Peters L, Petersen TC, Peterson J, Philippen S, Pieper S, Pizzuto A, Plum M, Popovych Y, Porcelli A, Rodriguez MP, Pries B, Procter-Murphy R, Przybylski GT, Raab C, Rack-Helleis J, Rameez M, Rawlins K, Rechav Z, Rehman A, Reichherzer P, Renzi G, Resconi E, Reusch S, Rhode W, Richman M, Riedel B, Roberts EJ, Robertson S, Rodan S, Roellinghoff G, Rongen M, Rott C, Ruhe T, Ruohan L, Ryckbosch D, Cantu DR, Safa , Saffer J, Salazar-Gallegos D, Sampathkumar P, Herrera SES, Sandrock A, Santander M, Sarkar S, Sarkar S, Schaufel M, Schieler H, Schindler S, Schlueter B, Schmidt T, Schneider J, Schroder FG, Schumacher L, Schwefer G, Sclafani S, Seckel D, Seunarine S, Sharma A, Shefali S, Shimizu N, Silva M, Skrzypek B, Smithers B, Snihur R, Soedingrekso J, Sogaard A, Soldin D, Spannfellner C, Spiczak GM, Spiering C, Stamatikos M, Stanev T, Stein R, Stezelberger T, Sturwald T, Stuttard T, Sullivan GW, Taboada , Ter-Antonyan S, Thompson WG, Thwaites J, Tilav S, Tollefson K, Tonnis C, Toscano S, Tosi D, Trettin A, Tung CF, Turcotte R, Twagirayezu JP, Ty B, Elorrieta MAU, Upshaw K, Valtonen-Mattila N, Vandenbroucke J, Van Eijndhoven N, Vannerom D, Van Santen J, Vara J, Veitch-Michaelis J, Verpoest S, Veske D, Walck C, Wang W, Watson TB, Weaver C, Weigel P, Weindl A, Weldert J, Wendt C, Werthebach J, Weyrauch M, Whitehorn N, Wiebusch CH, Willey N, Williams DR, Wolf M, Wrede G, Wulff J, Xu XW, Yanez JP, Yildizci E, Yoshida S, Yu S, Yuan T, Zhang Z, Zhelnin P (2022)
Publication Type: Journal article
Publication year: 2022
Book Volume: 17
Journal Issue: 11
DOI: 10.1088/1748-0221/17/11/P11003
IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV-100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%-20% compared to current maximum likelihood techniques in the energy range of 1 GeV-30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.
APA:
Abbasi, R., Ackermann, M., Adams, J., Aggarwal, N., Aguilar, J.A., Ahlers, M.,... Zhelnin, P. (2022). Graph Neural Networks for low-energy event classification & reconstruction in IceCube. Journal of Instrumentation, 17(11). https://doi.org/10.1088/1748-0221/17/11/P11003
MLA:
Abbasi, R., et al. "Graph Neural Networks for low-energy event classification & reconstruction in IceCube." Journal of Instrumentation 17.11 (2022).
BibTeX: Download