An AI-Powered Clinical Decision Support System to Predict Flares in Rheumatoid Arthritis: A Pilot Study

Labinsky H, Ukalovic D, Hartmann F, Runft V, Wichmann A, Jakubcik J, Gambel K, Otani K, Morf H, Taubmann J, Fagni F, Kleyer A, Simon D, Schett G, Reichert M, Knitza J (2023)


Publication Type: Journal article

Publication year: 2023

Journal

Book Volume: 13

Journal Issue: 1

DOI: 10.3390/diagnostics13010148

Abstract

Treat-to-target (T2T) is a main therapeutic strategy in rheumatology; however, patients and rheumatologists currently have little support in making the best treatment decision. Clinical decision support systems (CDSSs) could offer this support. The aim of this study was to investigate the accuracy, effectiveness, usability, and acceptance of such a CDSS-Rheuma Care Manager (RCM)-including an artificial intelligence (AI)-powered flare risk prediction tool to support the management of rheumatoid arthritis (RA). Longitudinal clinical routine data of RA patients were used to develop and test the RCM. Based on ten real-world patient vignettes, five physicians were asked to assess patients' flare risk, provide a treatment decision, and assess their decision confidence without and with access to the RCM for predicting flare risk. RCM usability and acceptance were assessed using the system usability scale (SUS) and net promoter score (NPS). The flare prediction tool reached a sensitivity of 72%, a specificity of 76%, and an AUROC of 0.80. Perceived flare risk and treatment decisions varied largely between physicians. Having access to the flare risk prediction feature numerically increased decision confidence (3.5/5 to 3.7/5), reduced deviations between physicians and the prediction tool (20% to 12% for half dosage flare prediction), and resulted in more treatment reductions (42% to 50% vs. 20%). RCM usability (SUS) was rated as good (82/100) and was well accepted (mean NPS score 7/10). CDSS usage could support physicians by decreasing assessment deviations and increasing treatment decision confidence.

Authors with CRIS profile

How to cite

APA:

Labinsky, H., Ukalovic, D., Hartmann, F., Runft, V., Wichmann, A., Jakubcik, J.,... Knitza, J. (2023). An AI-Powered Clinical Decision Support System to Predict Flares in Rheumatoid Arthritis: A Pilot Study. Diagnostics, 13(1). https://doi.org/10.3390/diagnostics13010148

MLA:

Labinsky, Hannah, et al. "An AI-Powered Clinical Decision Support System to Predict Flares in Rheumatoid Arthritis: A Pilot Study." Diagnostics 13.1 (2023).

BibTeX: Download