Existence of weak solutions for the incompressible Euler equations

Wiedemann E (2011)


Publication Type: Journal article

Publication year: 2011

Journal

Book Volume: 28

Pages Range: 727-730

Journal Issue: 5

DOI: 10.1016/j.anihpc.2011.05.002

Abstract

Using a recent result of C. De Lellis and L. Székelyhidi Jr. (2010) [2] we show that, in the case of periodic boundary conditions and for arbitrary space dimension d≥2, there exist infinitely many global weak solutions to the incompressible Euler equations with initial data v0, where v0 may be any solenoidal L2-vectorfield. In addition, the energy of these solutions is bounded in time.© 2011 Elsevier Masson SAS. All rights reserved.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Wiedemann, E. (2011). Existence of weak solutions for the incompressible Euler equations. Annales de l'Institut Henri Poincaré - Analyse Non Linéaire, 28(5), 727-730. https://dx.doi.org/10.1016/j.anihpc.2011.05.002

MLA:

Wiedemann, Emil. "Existence of weak solutions for the incompressible Euler equations." Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 28.5 (2011): 727-730.

BibTeX: Download