Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer

Shalabny A, Buonocore F, Celino M, Zhang L, Sardashti K, Härth M, Schubert DW, Bashouti MY (2022)


Publication Type: Journal article

Publication year: 2022

Journal

Book Volume: 599

Pages Range: 153957

Article Number: 153957

DOI: 10.1016/j.apsusc.2022.153957

Abstract

The need to develop new energy storage technology has led to deeper investigation into materials science to produce highly efficient batteries, primarily the lithium ion battery. The importance of electrodes in such devices has led to the reemergence of silicon nanowires (Si NWs) at the forefront of materials study—in this context, as an energy storage material (as electrodes). Redox potential and work function play the most important roles in charge transfer, the battery charging/discharging process. Thus, the NWs’ interfacial properties become important in achieving higher stability and efficiency. In this work, a deep study was conducted using equilibrium perturbation to change the surface electronic properties of Si NWs, which can be integrated into various technologies, while simultaneously achieving an interesting interface that is chemically passive and cheap to produce. By using an X-ray photoelectron spectroscope, a Kelvin probe, and contact angle measurement, combined with theoretical analysis, a full picture is achieved regarding the Si NWs’ interface, paving the way for this new technique to develop unique interfaces and to achieve a higher energy capacity and a longer lifetime.

Authors with CRIS profile

Additional Organisation(s)

Involved external institutions

How to cite

APA:

Shalabny, A., Buonocore, F., Celino, M., Zhang, L., Sardashti, K., Härth, M.,... Bashouti, M.Y. (2022). Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer. Applied Surface Science, 599, 153957. https://doi.org/10.1016/j.apsusc.2022.153957

MLA:

Shalabny, Awad, et al. "Enhancing the electronic properties of VLS-grown silicon nanowires by surface charge transfer." Applied Surface Science 599 (2022): 153957.

BibTeX: Download