ADOP: Approximate Differentiable One-Pixel Point Rendering

Rückert D, Franke L, Stamminger M (2022)

Publication Type: Journal article, Original article

Publication year: 2022


Book Volume: 41

Article Number: 99

Journal Issue: 4


DOI: 10.1145/3528223.3530122

Open Access Link:


In this paper we present ADOP, a novel point-based, differentiable neural rendering pipeline. Like other neural renderers, our system takes as input calibrated camera images and a proxy geometry of the scene, in our case a point cloud. To generate a novel view, the point cloud is rasterized with learned feature vectors as colors and a deep neural network fills the remaining holes and shades each output pixel. The rasterizer renders points as one-pixel splats, which makes it very fast and allows us to compute gradients with respect to all relevant input parameters efficiently. Furthermore, our pipeline contains a fully differentiable physically-based photometric
camera model, including exposure, white balance, and a camera response function. Following the idea of inverse rendering, we use our renderer to refine its input in order to reduce inconsistencies and optimize the quality of its output. In particular, we can optimize structural parameters like the camera pose, lens distortions, point positions and features, and a neural environment map, but also photometric parameters like camera response function, vignetting, and per-image exposure and white balance. Because our pipeline includes photometric parameters, e.g. exposure and camera response function, our system can smoothly handle input images with varying exposure and white balance, and generates high-dynamic range output. We show that due to the improved input, we can achieve high render quality, also for difficult input, e.g. with imperfect camera calibrations, inaccurate proxy geometry, or varying exposure. As a result, a simpler and thus faster
deep neural network is sufficient for reconstruction. In combination with the fast point rasterization, ADOP achieves real-time rendering rates even for models with well over 100M points.

Authors with CRIS profile

How to cite


Rückert, D., Franke, L., & Stamminger, M. (2022). ADOP: Approximate Differentiable One-Pixel Point Rendering. Acm Transactions on Graphics, 41(4).


Rückert, Darius, Linus Franke, and Marc Stamminger. "ADOP: Approximate Differentiable One-Pixel Point Rendering." Acm Transactions on Graphics 41.4 (2022).

BibTeX: Download