Channel Estimation for IRS-Assisted Millimeter-Wave MIMO Systems: Sparsity-Inspired Approaches

Lin T, Yu X, Zhu Y, Schober R (2022)


Publication Type: Journal article

Publication year: 2022

Journal

DOI: 10.1109/TCOMM.2022.3168876

Abstract

Due to their ability to create favorable line-of-sight (LoS) propagation environments, intelligent reflecting surfaces (IRSs) are regarded as promising enablers for future millimeter-wave (mm-wave) wireless communication. In this paper, we investigate channel estimation for IRS-assisted mm-wave multiple-input multiple-output (MIMO) wireless systems. By leveraging the sparsity of mm-wave channels in the angular domain, we formulate the channel estimation problem as an ℓ1-norm regularized optimization problem with fixed-rank constraints. To tackle the non-convexity of the formulated problem, an efficient algorithm is proposed by capitalizing on alternating minimization and manifold optimization (MO), which yields a locally optimal solution. To further reduce the computational complexity of the estimation algorithm, we propose a compressive sensing- (CS-) based channel estimation approach. In particular, a three-stage estimation protocol is put forward where the subproblem in each stage can be solved via low-complexity CS methods. Furthermore, based on the acquired channel state information (CSI) of the cascaded channel, we design a passive beamforming algorithm for maximization of the spectral efficiency. Simulation results reveal that the proposed MO-based estimation (MO-EST) and beamforming algorithms significantly outperform two benchmark schemes while the CS-based estimation (CS-EST) algorithm strikes a balance between performance and complexity.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Lin, T., Yu, X., Zhu, Y., & Schober, R. (2022). Channel Estimation for IRS-Assisted Millimeter-Wave MIMO Systems: Sparsity-Inspired Approaches. IEEE Transactions on Communications. https://dx.doi.org/10.1109/TCOMM.2022.3168876

MLA:

Lin, Tian, et al. "Channel Estimation for IRS-Assisted Millimeter-Wave MIMO Systems: Sparsity-Inspired Approaches." IEEE Transactions on Communications (2022).

BibTeX: Download