A point-like thermal light source as a probe for sensing light-matter interaction

Korn S, Popp MA, Weber HB (2022)


Publication Type: Journal article, Letter

Publication year: 2022

Journal

Book Volume: 12

Article Number: 4881

URI: https://www.nature.com/articles/s41598-022-07668-5

DOI: 10.1038/s41598-022-07668-5

Open Access Link: https://www.nature.com/articles/s41598-022-07668-5

Abstract

Historically, thermal radiation is related to 3D cavities. In practice, however, it is known that almost any hot surface radiates according to Planck’s law. This approximate universality roots in the smooth electromagnetic mode structure of free space, into which the radiation is emitted. Here, we study the effect for a strongly patterned mode structure and use quasi-transparent point-like thermal light emitters as a probe. As such, we choose current-driven graphene nanojunctions for which the emission into free space obeys Planck’s law. Placed in front of a mirror, however, this process is highly sensitive to a node/antinode pattern of light modes. By varying the distance, we can sample the latter with atomic precision, and observe a deep imprint on the observed spectrum. The experiment allows an unprecedented view on thermal radiation in a spatially/spectrally patterned electromagnetic environment.

Authors with CRIS profile

Related research project(s)

How to cite

APA:

Korn, S., Popp, M.A., & Weber, H.B. (2022). A point-like thermal light source as a probe for sensing light-matter interaction. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-07668-5

MLA:

Korn, Sascha, Matthias Albert Popp, and Heiko B. Weber. "A point-like thermal light source as a probe for sensing light-matter interaction." Scientific Reports 12 (2022).

BibTeX: Download