Conversion Between Cubic Bezier Curves and Catmull-Rom Splines

Tayebi Arasteh S, Kalisz A (2021)


Publication Language: English

Publication Type: Journal article, Original article

Publication year: 2021

Journal

Book Volume: 2

Article Number: 398

Journal Issue: 5

URI: https://link.springer.com/article/10.1007/s42979-021-00770-x

DOI: 10.1007/s42979-021-00770-x

Open Access Link: https://link.springer.com/article/10.1007/s42979-021-00770-x

Abstract

Splines are one of the main methods of mathematically representing complicated shapes, which have become the primary technique in the fields of Computer Graphics (CG) and Computer-Aided Geometric Design (CAGD) for modeling complex surfaces. Among all, Bézier and Catmull–Rom splines are the most common in the sub-fields of engineering. In this paper, we focus on conversion between cubic Bézier and Catmull–Rom curve segments, rather than going through their properties. By deriving the conversion equations, we aim at converting the original set of the control points of either of the Catmull–Rom or Bézier cubic curves to a new set of control points, which corresponds to approximately the same shape as the original curve, when considered as the set of the control points of the other curve. Due to providing simple linear transformations of control points, the method is very simple, efficient, and easy to implement, which is further validated in this paper using some numerical and visual examples.

Authors with CRIS profile

How to cite

APA:

Tayebi Arasteh, S., & Kalisz, A. (2021). Conversion Between Cubic Bezier Curves and Catmull-Rom Splines. SN Computer Science, 2(5). https://doi.org/10.1007/s42979-021-00770-x

MLA:

Tayebi Arasteh, Soroosh, and Adam Kalisz. "Conversion Between Cubic Bezier Curves and Catmull-Rom Splines." SN Computer Science 2.5 (2021).

BibTeX: Download