SARS-CoV-2 N gene dropout and N gene Ct value shift as indicator for the presence of B.1.1.7 lineage in a commercial multiplex PCR assay

Wollschläger P, Todt D, Gerlitz N, Pfaender S, Bollinger T, Sing A, Dangel A, Ackermann N, Korn K, Enßer A, Steinmann E, Buhl M, Steinmann J (2021)


Publication Type: Journal article

Publication year: 2021

Journal

DOI: 10.1016/j.cmi.2021.05.025

Abstract

Objectives: Detection and surveillance of SARS-CoV-2 is of eminent importance, particularly due to the rapid emergence of variants of concern (VOCs). In this study we evaluated if a commercially available quantitative real-time PCR (qRT-PCR) assay can identify SARS-CoV-2 B.1.1.7 lineage samples by a specific N gene dropout or Ct value shift compared with the S or RdRp gene. Methods: VOC B.1.1.7 and non-B.1.1.7 SARS-CoV-2-positive patient samples were identified via whole-genome sequencing and variant-specific PCR. Confirmed B.1.1.7 (n = 48) and non-B.1.1.7 samples (n = 58) were analysed using the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay for presence of SARS-CoV-2 S, RdRp and N genes. The N gene coding sequence of SARS-CoV-2 with and without the D3L mutation (specific for B.1.1.7) was cloned into pCR™II-TOPO™ vectors to validate polymorphism-dependent N gene dropout with the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay. Results: All studied B.1.1.7-positive patient samples showed significantly higher Ct values in qRT-PCR (Δ6–10, N gene dropout on Ct values > 29) of N gene than the corresponding values of S (p ≤ 0.0001) and RdRp (p ≤ 0.0001) genes. The assay reliably discriminated B.1.1.7 and non-B.1.1.7 positive samples (area under the curve = 1) in a receiver operating characteristic curve analysis. Identical Ct value shifts (Δ7–10) were detected in reverse genetic experiments, using isolated plasmids containing N gene coding sequences corresponding to D3 or 3L variants. Discussion: An N gene dropout or Ct value shift is shown for B.1.1.7-positive samples in the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay. This approach can be used as a rapid tool for B.1.1.7 detection in single assay high throughput diagnostics.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Wollschläger, P., Todt, D., Gerlitz, N., Pfaender, S., Bollinger, T., Sing, A.,... Steinmann, J. (2021). SARS-CoV-2 N gene dropout and N gene Ct value shift as indicator for the presence of B.1.1.7 lineage in a commercial multiplex PCR assay. Clinical Microbiology and Infection. https://doi.org/10.1016/j.cmi.2021.05.025

MLA:

Wollschläger, Paul, et al. "SARS-CoV-2 N gene dropout and N gene Ct value shift as indicator for the presence of B.1.1.7 lineage in a commercial multiplex PCR assay." Clinical Microbiology and Infection (2021).

BibTeX: Download