Loktyushin A, Herz K, Dang N, Glang F, Deshmane A, Weinmüller S, Dörfler A, Scholkopf B, Scheffler K, Zaiss M (2021)
Publication Type: Journal article
Publication year: 2021
DOI: 10.1002/mrm.28727
Purpose A supervised learning framework is proposed to automatically generate MR sequences and corresponding reconstruction based on the target contrast of interest. Combined with a flexible, task-driven cost function this allows for an efficient exploration of novel MR sequence strategies.
APA:
Loktyushin, A., Herz, K., Dang, N., Glang, F., Deshmane, A., Weinmüller, S.,... Zaiss, M. (2021). MRzero - Automated discovery of MRI sequences using supervised learning. Magnetic Resonance in Medicine. https://doi.org/10.1002/mrm.28727
MLA:
Loktyushin, A., et al. "MRzero - Automated discovery of MRI sequences using supervised learning." Magnetic Resonance in Medicine (2021).
BibTeX: Download