Leonardi A (2021)
Publication Type: Journal article
Publication year: 2021
Book Volume: 8
Pages Range: 257-269
DOI: 10.1107/S2052252521000324
Microstructure-based design of materials requires an atomic level understanding of the mechanisms underlying structure-dependent properties. Methods for analyzing either the traditional diffraction profile or the pair distribution function (PDF) differ in how the information is accessed and in the approximations usually applied. Any variation of structural and microstructural features over the whole sample affects the Bragg peaks as well as any diffuse scattering. Accuracy of characterization relies, therefore, on the reliability of the analysis methods. Methods based on Bragg's law investigate the diffraction peaks in the intensity plot as distinct pieces of information. This approach reaches a limitation when dealing with disorder scenarios that do not conform to such a peak-by-peak basis. Methods based on the Debye scattering equation (DSE) are, otherwise, well suited to evaluate the scattering from a disordered phase but the structure information is averaged over short-range distances usually accessed by experiments. Moreover, statistical reliability is usually sacrificed to recover some of the computing-efficiency loss compared with traditional line-profile-analysis methods. Here, models based on Bragg's law are used to facilitate the computation of a whole PDF and then model powder-scattering data via the DSE. Models based on Bragg's law allow the efficient solution of the dispersion of a crystal's properties in a powder sample with statistical reliability, and the PDF provides the flexibility of the DSE. The whole PDF is decomposed into the independent directional components, and the number of atom pairs separated by a given distance is statistically estimated using the common-volume functions. This approach overcomes the need for an atomistic model of the material sample and the computation of billions of pair distances. The results of this combined method are in agreement with the explicit solution of the DSE although the computing efficiency is comparable with that of methods based on Bragg's law. Most importantly, the method exploits the strengths and different sensitivities of the Bragg and Debye theories.
APA:
Leonardi, A. (2021). Whole pair distribution function modeling: the briaging of Bragg and Debye scattering theories. IUCrJ, 8, 257-269. https://doi.org/10.1107/S2052252521000324
MLA:
Leonardi, Alberto. "Whole pair distribution function modeling: the briaging of Bragg and Debye scattering theories." IUCrJ 8 (2021): 257-269.
BibTeX: Download