Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling

Aiello S, Domi A, Albert A, Garre SA, Aly Z, Ameli F, Anassontzis E, Andre M, Androulakis G, Anghinolfi M, Anguita M, Anton G, Ardid M, Aublin J, Bagatelas C, Bakker R, Barbarino G, Baret B, Du Pree SB, Bendahman M, Berbeen E, Van Den Berg AM, Bertin , Biagi S, Billault M, Bissinger M, Bottcher M, Boumaaza J, Bouta M, Bouwhuis M, Bozza C, Branzas H, Bruijn R, Brunner J, Buis E, Buompane R, Busto J, Cacopardo G, Caiffi B, Caillat L, Calvo D, Capone A, Carretero , Castaldi P, Celli S, Chabab M, Chau N, Chen A, Cherubini S, Chiarella , Chiarusi T, Circella M, Cocimano R, Coelho JAB, Coleiro A, Molla MC, Colonges S, Coniglione R, Corredoira , Cosquer A, Coyle P, Creusot A, Cuttone G, D'Amato C, Donofrio A, Dallier R, De Palma M, Di Palma , Diaz AF, Diego-Tortosa D, Distefano C, Domi A, Dona R, Donzau C, Dornic D, Dorr M, Drouhin D, Eberl T, Eddyamoui A, Van Eeden T, Van Eijk D, El Bojaddaini , Elsaesser D, Enzenhofer A, Espinosa , Fermani P, Ferrara G, Filipovic MD, Filippini F, Fusco LA, Gabella O, Gal T, Soto AG, Garufi F, Gatelet Y, Geißelbrecht N, Gialanella L, Giorgio E, Gostiaux L, Gozzini S, Gracia R, Graf K, Grasso D, Grella G, Grmek A, Guderian D, Guidii C, Hallmann S, Hamdaoui H, Van Haren H, Van Heerwaarden J, Heijboer A, Hekaloa A, Henry S, Hernandez-Rey JJ, Hillebrand T, Hofestadt J, Huang F, Ibnsalih WI, Ilioni A, Illuminati G, James CW, De Jong MD, De Jong PD, Jung BJ, Kadler M, Kalaczynski P, Kalekin O, Katz U, Chowdhury NRK, Kistauri G, Van Der Knaap F, Koffeman EN, Kooijman P, Kouchner A, Kreter M, Kulikovskiy , Laan M, Lahmann R, Lamare P, Larosa G, Laurence J, Le Breton RL, Leonardi O, Leone F, Leonora E, Lincetto M, Clark ML, Lipreau T, Longhitano F, Lopez-Coto D, Maderer L, Manczak J, Mannheim K, Margiotta A, Marinelli A, Markou C, Martin L, Martinez-Mora J, Martini A, Marzaioli F, Mastroianni S, Mazzou S, Melis KW, Miele G, Migliozzi P, Migneco E, Mijakowski P, Miranda LS, Mollo CM, Mongelli M, Morganti M, Moser M, Moussa A, Muller R, Perez DM, Musumeci M, Nauta L, Navas S, Nicolau CA, Fearraigh BO, O'Sullivan M, Organokov M, Orlando A, Gonzalez JP, Papalashvili G, Papaleo R, Pastore C, Puaun AM, Pavalacs GE, Pellegrino C, Perrin-Terrin M, Piattelli P, Pieterse C, Pikounis K, Pisanti O, Poire C, Popa , Pradier T, Puhlhofer G, Pulvirenti S, Rabyang O, Raffaelli F, Randazzo N, Razzaque S, Real D, Reck S, Riccobene G, Richer M, Rivoire S, Rovelli A, Greus FS, Samtleben DFE, Losa AS, Sanguineti M, Santangelo A, Santonocito D, Sapienza P, Schnabel J, Schumann J, Seneca J, Sgura , Shanidze R, Sharma A, Simeone F, Sinopoulou A, Spisso B, Spurio M, Stavropoulos D, Steijger J, Stellacci SM, Taiutii M, Tayalati Y, Tenllado E, Thakore T, Tingay S, Tzamariudaki E, Tzanetatos D, Elewyck VV, Vasileiadis G, Versari F, Viola S, Vivolo D, De Wasseige G, Wilms J, Wojaczynski R, De Wolf E, Zavatarelli S, Zegarelli A, Zito D, Zornoza JD, Zuniga J, Żywucka N (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 15

Journal Issue: 11

DOI: 10.1088/1748-0221/15/11/P11027

Abstract

KM3NeT is a research infrastructure being installed in the deep Mediterranean Sea. It will house a neutrino telescope comprising hundreds of networked moorings - detection units or strings - equipped with optical instrumentation to detect the Cherenkov radiation generated by charged particles from neutrino-induced collisions in its vicinity. In comparison to moorings typically used for oceanography, several key features of the KM3NeT string are different: the instrumentation is contained in transparent and thus unprotected glass spheres; two thin Dyneema (R) ropes are used as strength members; and a thin delicate backbone tube with fibre-optics and copper wires for data and power transmission, respectively, runs along the full length of the mooring. Also, compared to other neutrino telescopes such as ANTARES in the Mediterranean Sea and GVD in Lake Baikal, the KM3NeT strings are more slender to minimise the amount of material used for support of the optical sensors. Moreover, the rate of deploying a large number of strings in a period of a few years is unprecedented. For all these reasons, for the installation of the KM3NeT strings, a custom-made, fast deployment method was designed. Despite the length of several hundreds of metres, the slim design of the string allows it to be compacted into a small, re-usable spherical launching vehicle instead of deploying the mooring weight down from a surface vessel. After being lowered to the seafloor, the string unfurls to its full length with the buoyant launching vehicle rolling along the two ropes. The design of the vehicle, the loading with a string, and its underwater self-unrolling are detailed in this paper.

Authors with CRIS profile

How to cite

APA:

Aiello, S., Domi, A., Albert, A., Garre, S.A., Aly, Z., Ameli, F.,... Żywucka, N. (2020). Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling. Journal of Instrumentation, 15(11). https://doi.org/10.1088/1748-0221/15/11/P11027

MLA:

Aiello, S., et al. "Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling." Journal of Instrumentation 15.11 (2020).

BibTeX: Download