Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments

Aartsen MG, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Alispach C, Andeen K, Anderson T, Ansseau I, Anton G, Argüelles C, Arlen TC, Auffenberg J, Axani S, Backes P, Bagherpour H, Bai X, Balagopal AV, Barbano A, Barwick SW, Bastian B, Baum V, Baur S, Bay R, Beatty JJ, Becker KH, Becker Tjus J, BenZvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bohm C, Börner M, Böser S, Botner O, Böttcher J, Bourbeau E, Bourbeau J, Bradascio F, Braun J, Bron S, Brostean-Kaiser J, Burgman A, Buscher J, Busse RS, Carver T, Chen C, Cheung E, Chirkin D, Choi S, Clark K, Classen L, Coleman A, Collin GH, Conrad JM, Coppin P, Correa P, Cowen DF, Cross R, Dave P, De Clercq C, DeLaunay JJ, Dembinski H, Deoskar K, De Ridder S, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Diaz A, Dáz-Vélez JC, Dujmovic H, Dunkman M, Dvorak E, Eberhardt B, Ehrhardt T, Eller P, Engel R, Evans JJ, Evenson PA, Fahey S, Fazely AR, Felde J, Filimonov K, Finley C, Fox D, Franckowiak A, Friedman E, Fritz A, Gaisser TK, Gallagher J, Ganster E, Garrappa S, Gerhardt L, Ghorbani K, Glauch T, Glüsenkamp T, Goldschmidt A, Gonzalez JG, Grant D, Griffith Z, Griswold S, Günder M, Gündüz M, Haack C, Hallgren A, Halliday R, Halve L, Halzen F, Hanson K, Haungs A, Hebecker D, Heereman D, Heix P, Helbing K, Hellauer R, Henningsen F, Hickford S, Hignight J, Hill GC, Hoffman KD, Hoffmann R, Hoinka T, Hokanson-Fasig B, Hoshina K, Huang F, Huber M, Huber T, Hultqvist K, Hünnefeld M, Hussain R, In S, Iovine N, Ishihara A, Japaridze GS, Jeong M, Jero K, Jones BJ, Jonske F, Joppe R, Kang D, Kang W, Kappes A, Kappesser D, Karg T, Karl M, Karle A, Katori T, Katz U, Kauer M, Kelley JL, Kheirandish A, Kim J, Kintscher T, Kiryluk J, Kittler T, Klein SR, Koirala R, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krings K, Krückl G, Kulacz N, Kurahashi N, Kyriacou A, Lanfranchi JL, Larson MJ, Lauber F, Lazar JP, Leonard K, Leszczyńska A, Leuermann M, Liu QR, Lohfink E, Lozano Mariscal CJ, Lu L, Lucarelli F, Lünemann J, Luszczak W, Lyu Y, Ma WY, Madsen J, Maggi G, Mahn KB, Makino Y, Mallik P, Mallot K, Mancina S, Mandalia S, Mariş IC, Maruyama R, Mase K, Maunu R, McNally F, Meagher K, Medici M, Medina A, Meier M, Meighen-Berger S, Menne T, Merino G, Meures T, Micallef J, Mockler D, Momenté G, Montaruli T, Moore RW, Morse R, Moulai M, Muth P, Nagai R, Naumann U, Neer G, Niederhausen H, Nisa MU, Nowicki SC, Nygren DR, Obertacke Pollmann A, Oehler M, Olivas A, O'Murchadha A, O'Sullivan E, Palczewski T, Pandya H, Pankova DV, Park N, Peiffer P, Pérez de los Heros C, Philippen S, Pieloth D, Pinat E, Pizzuto A, Plum M, Porcelli A, Price PB, Przybylski GT, Raab C, Raissi A, Rameez M, Rauch L, Rawlins K, Rea IC, Reimann R, Relethford B, Renschler M, Renzi G, Resconi E, Rhode W, Richman M, Robertson S, Rongen M, Rott C, Ruhe T, Ryckbosch D, Rysewyk D, Safa I, Sanchez Herrera SE, Sandrock A, Sandroos J, Santander M, Sarkar S, Satalecka K, Schaufel M, Schieler H, Schlunder P, Schmidt T, Schneider A, Schneider J, Schröder FG, Schulte L, Schumacher L, Sclafani S, Seckel D, Seunarine S, Shefali S, Silva M, Snihur R, Soedingrekso J, Soldin D, Söldner-Rembold S, Song M, Spiczak GM, Spiering C, Stachurska J, Stamatikos M, Stanev T, Stein R, Steinmüller P, Stettner J, Steuer A, Stezelberger T, Stokstad RG, Stößl A, Strotjohann NL, Stürwald T, Stuttard T, Sullivan GW, Taboada I, Tenholt F, Ter-Antonyan S, Terliuk A, Tilav S, Tollefson K, Tomankova L, Tönnis C, Toscano S, Tosi D, Trettin A, Tselengidou M, Tung CF, Turcati A, Turcotte R, Turley CF, Ty B, Unger E, Unland Elorrieta MA, Usner M, Vandenbroucke J, Van Driessche W, van Eijk D, van Eijndhoven N, van Santen J, Verpoest S, Vraeghe M, Walck C, Wallace A, Wallraff M, Wandkowsky N, Watson TB, Weaver C, Weindl A, Weiss MJ, Weldert J, Wendt C, Werthebach J, Whelan BJ, Whitehorn N, Wiebe K, Wiebusch CH, Wille L, Williams DR, Wills L, Wolf M, Wood J, Wood TR, Woschnagg K, Wrede G, Wren S, Xu DL, Xu XW, Xu Y, Yanez JP, Yodh G, Yoshida S, Yuan T, Zöcklein M (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 977

Article Number: 164332

DOI: 10.1016/j.nima.2020.164332

Abstract

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as Monte Carlo weighting. In this work we present a staged approach to the generation of expected distributions of observables in order to overcome these challenges. By combining multiple integration and smoothing techniques which address limited statistics from simulation it arrives at reliable analysis results using modest computational resources.

Authors with CRIS profile

How to cite

APA:

Aartsen, M.G., Ackermann, M., Adams, J., Aguilar, J.A., Ahlers, M., Ahrens, M.,... Zöcklein, M. (2020). Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 977. https://doi.org/10.1016/j.nima.2020.164332

MLA:

Aartsen, M. G., et al. "Computational techniques for the analysis of small signals in high-statistics neutrino oscillation experiments." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 977 (2020).

BibTeX: Download