Bertinshaw J, Gurung N, Jorba P, Liu H, Schmid M, Mantadakis DT, Daghofer M, Krautloher MJ, Jain A, Ryu GH, Fabelo O, Hansmann P, Khaliullin G, Pfleiderer C, Keimer B, Kim BJ (2019)
Publication Type: Journal article
Publication year: 2019
Book Volume: 123
Article Number: 137204
Journal Issue: 13
DOI: 10.1103/PhysRevLett.123.137204
The electric-current stabilized semimetallic state in the quasi-two-dimensional Mott insulator Ca2RuO4 exhibits an exceptionally strong diamagnetism. Through a comprehensive study using neutron and x-ray diffraction, we show that this nonequilibrium phase assumes a crystal structure distinct from those of equilibrium metallic phases realized in the ruthenates by chemical doping, high pressure, and epitaxial strain, which in turn leads to a distinct electronic band structure. Dynamical mean field theory calculations based on the crystallographically refined atomic coordinates and realistic Coulomb repulsion parameters indicate a semimetallic state with partially gapped Fermi surface. Our neutron diffraction data show that the nonequilibrium behavior is homogeneous, with antiferromagnetic long-range order completely suppressed. These results provide a new basis for theoretical work on the origin of the unusual nonequilibrium diamagnetism in Ca2RuO4.
APA:
Bertinshaw, J., Gurung, N., Jorba, P., Liu, H., Schmid, M., Mantadakis, D.T.,... Kim, B.J. (2019). Unique Crystal Structure of Ca2RuO4 in the Current Stabilized Semimetallic State. Physical Review Letters, 123(13). https://doi.org/10.1103/PhysRevLett.123.137204
MLA:
Bertinshaw, J., et al. "Unique Crystal Structure of Ca2RuO4 in the Current Stabilized Semimetallic State." Physical Review Letters 123.13 (2019).
BibTeX: Download