Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data

Aartsen MG, Ackermann M, Adams J, A. Aguilar J, Ahlers M, Ahrens M, Alispach C, Altmann D, Andeen K, Anderson T, Ansseau I, Anton G, Argüelles C, Auffenberg J, Axani S, Backes P, Bagherpour H, Bai X, Barbano A, Barwick SW, Baum V, Bay R, Beatty JJ, Becker KH, Becker Tjus J, BenZvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bohm C, Börner M, Böser S, Botner O, Bourbeau E, Bourbeau J, Bradascio F, Braun J, Bretz HP, Bron S, Brostean-Kaiser J, Burgman A, Busse RS, Carver T, Chen C, Cheung E, Chirkin D, Clark K, Classen L, Collin GH, Conrad JM, Coppin P, Correa P, Cowen DF, Cross R, Dave P, de André JP, De Clercq C, DeLaunay JJ, Dembinski H, Deoskar K, De Ridder S, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Díaz-Vélez JC, Dujmovic H, Dunkman M, Dvorak E, Eberhardt B, Ehrhardt T, Eller P, Evenson PA, Fahey S, Fazely AR, Felde J, Filimonov K, Finley C, Franckowiak A, Friedman E, Fritz A, Gaisser TK, Gallagher J, Ganster E, Garrappa S, Gerhardt L, Ghorbani K, Glauch T, Glüsenkamp T, Goldschmidt A, Gonzalez JG, Grant D, Griffith Z, Günder M, Gündüz M, Haack C, Hallgren A, Halve L, Halzen F, Hanson K, Hebecker D, Heereman D, Helbing K, Hellauer R, Henningsen F, Hickford S, Hignight J, Hill GC, Hoffman KD, Hoffmann R, Hoinka T, Hokanson-Fasig B, Hoshina K, Huang F, Huber M, Hultqvist K, Hünnefeld M, Hussain R, In S, Iovine N, Ishihara A, Jacobi E, Japaridze GS, Jeong M, Jero K, Jones BJ, Kang W, Kappes A, Kappesser D, Karg T, Karl M, Karle A, Katz U, Kauer M, Keivani A, Kelley JL, Kheirandish A, Kim J, Kintscher T, Kiryluk J, Kittler T, Klein SR, Koirala R, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Kowalski M, Krings K, Krückl G, Kulacz N, Kunwar S, Kurahashi N, Kyriacou A, Labare M, Lanfranchi JL, Larson MJ, Lauber F, Lazar JP, Leonard K, Leuermann M, Liu QR, Lohfink E, Lozano Mariscal CJ, Lu L, Lucarelli F, Lünemann J, Luszczak W, Madsen J, Maggi G, Mahn KB, Makino Y, Mallot K, Mancina S, Mariş IC, Maruyama R, Mase K, Maunu R, Meagher K, Medici M, Medina A, Meier M, Meighen-Berger S, Menne T, Merino G, Meures T, Miarecki S, Micallef J, Momenté G, Montaruli T, Moore RW, Moulai M, Nagai R, Nahnhauer R, Nakarmi P, Naumann U, Neer G, Niederhausen H, Nowicki SC, Nygren DR, Obertacke Pollmann A, Olivas A, O'Murchadha A, O'Sullivan E, Palczewski T, Pandya H, Pankova DV, Park N, Peiffer P, Pérez de los Heros C, Pieloth D, Pinat E, Pizzuto A, Plum M, Price PB, Przybylski GT, Raab C, Raissi A, Rameez M, Rauch L, Rawlins K, Rea IC, Reimann R, Relethford B, Renzi G, Resconi E, Rhode W, Richman M, Robertson S, Rongen M, Rott C, Ruhe T, Ryckbosch D, Rysewyk D, Safa I, Sanchez Herrera SE, Sandrock A, Sandroos J, Santander M, Sarkar S, Satalecka K, Schaufel M, Schlunder P, Schmidt T, Schneider A, Schneider J, Schumacher L, Sclafani S, Seckel D, Seunarine S, Silva M, Snihur R, Soedingrekso J, Soldin D, Song M, Spiczak GM, Spiering C, Stachurska J, Stamatikos M, Stanev T, Stasik A, Stein R, Stettner J, Steuer A, Stezelberger T, Stokstad RG, Stößl A, Strotjohann NL, Ström R, Stuttard T, Sullivan GW, Sutherland M, Taboada I, Tenholt F, Ter-Antonyan S, Terliuk A, Tilav S, Tomankova L, Tönnis C, Toscano S, Tosi D, Tselengidou M, Tung CF, Turcati A, Turcotte R, Turley CF, Ty B, Unger E, Unland Elorrieta MA, Usner M, Vandenbroucke J, Van Driessche W, van Eijk D, van Eijndhoven N, Vanheule S, van Santen J, Vraeghe M, Walck C, Wallace A, Wallraff M, Wandkowsky N, Watson TB, Weaver C, Weiss MJ, Weldert J, Wendt C, Werthebach J, Westerhoff S, Whelan BJ, Whitehorn N, Wiebe K, Wiebusch CH, Wille L, Williams DR, Wills L, Wolf M, Wood J, Wood TR, Woschnagg K, Wrede G, Xu DL, Xu XW, Xu Y, Yanez JP, Yodh G, Yoshida S, Yuan T (2020)


Publication Type: Journal article

Publication year: 2020

Journal

Book Volume: 116

Article Number: 102392

DOI: 10.1016/j.astropartphys.2019.102392

Abstract

Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.

Authors with CRIS profile

How to cite

APA:

Aartsen, M.G., Ackermann, M., Adams, J., A. Aguilar, J., Ahlers, M., Ahrens, M.,... Yuan, T. (2020). Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data. Astroparticle Physics, 116. https://doi.org/10.1016/j.astropartphys.2019.102392

MLA:

Aartsen, M. G., et al. "Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data." Astroparticle Physics 116 (2020).

BibTeX: Download