Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

Aab A, Abreu P, Aglietta M, Ahn EJ, Al Samarai I, Albuquerque IFM, Allekotte I, Allison P, Almela A, Alvarez Castillo J, Alvarez-Muniz J, Batista RA, Ambrosio M, Aminaei A, Anastasi GA, Anchordoqui L, Andringa S, Aramo C, Arqueros F, Arsene N, Asorey H, Assis PJS, Aublin J, Avila G, Awal N, Badescu AM, Baus C, Beatty JJ, Becker KH, Bellido JA, Berat C, Bertaina ME, Bertou X, Biermann PL, Billoir P, Blaess SG, Blanco A, Blanco M, Blazek J, Bleve C, Bluemer H, Bohacova M, Boncioli D, Bonifazi C, Borodai N, Brack J, Brancus I, Bretz T, Bridgeman A, Brogueira P, Buchholz P, Bueno A, Buitink S, Buscemi M, Caballero-Mora KS, Caccianiga B, Caccianiga L, Candusso M, Caramete L, Caruso R, Castellina A, Cataldi G, Cazon L, Cester R, Chavez AG, Chiavassa A, Chinellato JA, Chudoba J, Cilmo M, Clay RW, Cocciolo G, Colalillo R, Coleman A, Collica L, Coluccia MR, Conceicao R, Contreras F, Cooper MJ, Cordier A, Coutu S, Covault CE, Cronin J, Dallier R, Daniel B, Dasso S, Daumiller K, Dawson BR, De Almeida RM, De Jong SJ, De Mauro G, De Mello Neto JRT, De Mitri I, De Oliveira J, De Souza V, Del Pera L, Deligny O, Dhita N, Di Giulio C, Di Matteot A, Diaz JC, Diaz Castro ML, Diogo F, Dobrigkeit C, Docters W, D'Olivo JC, Dorofeev A, Hasankiadeh QD, Dos Anjos RC, Dova MT, Ebr J, Enge R, Erdmann M, Erfani M, Escobar CO, Eser J, Espadanal J, Etchegoyeng A, Falcke H, Fang K, Farrar G, Fauth AC, Fazzini N, Ferguson AP, Fick B, Figueira JM, Filevich A, Filipcic A, Fratu O, Freire MM, Fujii T, Garcia B, Garcia-Gamez D, Garcia-Pinto D, Gate F, Gemmeke H, Gherghel-Lascu A, Ghia PL, Giaccari U, Giammarchi M, Giller M, Glas D, Glaser C, Glass H, Golup G, Gomez Berisso M, Gomez Vitale PF, Gonzalez N, Gookin B, Gordon J, Gorgi A, Gorham P, Gouffon P, Griffith N, Grillo AF, Grubb TD, Guarino F, Guedes GP, Hampel MR, Hansen P, Harari D, Harrison TA, Hartmann S, Harton JL, Haungs A, Hebbeker T, Heck D, Heimann P, Herve AE, Hill GC, Hojvat C, Hohon N, Holt E, Homola P, Horandel JR, Horvath P, Hrabovsky M, Huber D, Huege T, Insolia A, Isar PG, Jandt I, Jansen S, Jarne C, Johnsen JA, Josebachuili M, Kaeaepae A, Kambeitz O, Kampert KH, Kasper P, Katkov I, Keilhauer B, Kemp E, Kieckhafer RM, Klages HO, Kleifges M, Kleinfeller J, Krause R, Krohm N, Kuempe D, Mezek GK, Kunka N, Awad AWK, Lahurd D, Lang A, Latronico L, Lauer R, Lauscher M, Lautridou P, Le Coz S, Lebrun D, Lebrun P, Leigui De Oliveira MA, Letessier-Selvon A, Lhenry-Yvon I, Link K, Lopes L, Lopez R, Lopez Casado A, Louedec K, Lucero A, Malacari M, Mallamaci M, Maller J, Mandat D, Mantsch P, Mariazzi AG, Marin V, Maris IC, Marsella G, Martello D, Martinez H, Martinez Bravo O, Martraire D, Masias Meza JJ, Mathes HJ, Mathys S, Matthews J, Matthews JAJ, Matthiae G, Maurizio D, Mayotte E, Mazur PO, Medina C, Medina-Tanco G, Meissner R, Meo VBB, Melo D, Menshikov A, Messina S, Micheletti MI, Middendorf L, Minaya IA, Miramonti L, Mitrica B, Molina-Bueno L, Mollerach S, Montanet F, Morello C, Mostafa M, Moura CA, Mueller G, Muller MA, Mueller S, Navas S, Necesa P, Nellen L, Nelles A, Neuser J, Nguyen PH, Niculescu-Oglinzanu M, Niechcio M, Niemietz L, Niggemann T, Nitz D, Nosek D, Novotny V, Nozka L, Nunez LA, Ochilo L, Oikonomou F, Olinto A, Pacheco N, Pakk Selmi-Dei D, Palatka M, Pallotta J, Papenbreer P, Parente G, Parra A, Paul T, Pech M, Pekala J, Pelayo R, Pepe IM, Perrone L, Petermann E, Peters C, Petrera S, Petrov Y, Phuntsok J, Piegaia R, Pierog T, Pieroni P, Pimenta M, Pirrone V, Platino M, Plum M, Porcelli A, Porowski C, Prado RR, Privitera R, Prouza M, Quel EJ, Querchfeld S, Quinn S, Rautenberg J, Rave O, Ravignani D, Reinert D, Revenu B, Ridky J, Risse M, Ristori P, Rizi V, Rodrigues De Carvalho W, Rodriguez Rojo J, Rodriguez-Frias MD, Rogozin D, Rosado J, Roth M, Roulet E, Rovero AC, Saffi SJ, Saftoiu A, Salazar H, Saleh A, Greus FS, Salina G, Sanabria Gomez JD, Sanchez F, Sanchez-Lucas P, Santos EM, Santos ED, Sarazin F, Sarkar B, Sarmento R, Sarmiento-Cano C, Sato R, Scarso C, Schauer M, Scherini V, Schieler H, Schmidt D, Scholten O, Schoorlemmer H, Schovanek P, Schroeder FG, Schulz A, Schulz J, Schumacher J, Sciutto SJ, Segreto A, Settimo M, Shadkam A, Shellard RC, Sig G, Sima O, Smialkowski A, Smida R, Snow GR, Sommers P, Sonntag S, Sorokin J, Squartini R, Srivastava YN, Stanca D, Stanic S, Stapleton J, Stasielak J, Stephan M, Stutz A, Suarez F, Suarez Duran M, Suomijaervi T, Supanitsky AD, Sutherland MS, Swain J, Szadkowski Z, Taborda OA, Tapia A, Tepe A, Theodoro VM, Timmermans C, Todero Peixoto CJ, Toma G, Tomankova L, Tome B, Tonachini A, Torralba Elipe G, Torres Machado D, Travnicek P, Trini M, Ulrich R, Unger M, Urban M, Valdes Galicia JF, Valino I, Valore L, Van Aar G, Van Bodegom P, Van Den Berg AM, Van Velzen S, Van Vliet A, Varela E, Vargas Cardenas B, Varner G, Vasquez R, Vazquez JR, Vazquez RA, Veberie D, Verzi V, Vicha J, Videla M, Villasenor L, Vlcek B, Vorobiov S, Wahlberg H, Wainberg O, Walz D, Watson AA, Weber M, Weidenhaupt K, Weindl A, Werner F, Widom A, Wiencke L, Wilczynski H, Winchen T, Wittkowski D, Wundheiler B, Wykes S, Yang L, Yapici T, Yushkov A, Zas E, Zavrtanik D, Zavrtanik M, Zepeda A, Zimmermann B, Ziolkowski M, Zuccarello F (2016)


Publication Status: Published

Publication Type: Journal article

Publication year: 2016

Journal

Publisher: IOP PUBLISHING LTD

Book Volume: 11

Article Number: ARTN P01018

DOI: 10.1088/1748-0221/11/01/P01018

Abstract

To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a "beacon transmitter" which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

How to cite

APA:

Aab, A., Abreu, P., Aglietta, M., Ahn, E.J., Al Samarai, I., Albuquerque, I.F.M.,... Zuccarello, F. (2016). Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers. Journal of Instrumentation, 11. https://dx.doi.org/10.1088/1748-0221/11/01/P01018

MLA:

Aab, A., et al. "Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers." Journal of Instrumentation 11 (2016).

BibTeX: Download