Knabner P, Vessella S (1988)
Publication Language: English
Publication Type: Journal article
Publication year: 1988
Book Volume: 10
Pages Range: 575-583
Journal Issue: 5
In this paper we consider the non‐characteristic Cauchy problem ut−a(x)uxx−b(x)ux−c(x)u = 0, x ∈ (0, l), t ∈ I, u(0, t) = φ(t), ux(0, t) = 0, t ∈ I, where I = ℝ or I = ℝ+ and u(x, 0) = 0, x ∈ [0, l], in the case I = ℝ+. Assuming an a priori bound for ‖u(l,.)‖, we derive the exact Hölder type dependence of on ‖u(x,.)‖
on ‖φ‖
.
APA:
Knabner, P., & Vessella, S. (1988). The Optimal Stability Estimate for some Ill-posed Cauchy Problems for a Parabolic Equation. Mathematical Methods in the Applied Sciences, 10(5), 575-583. https://doi.org/10.1002/mma.1670100507
MLA:
Knabner, Peter, and Sergio Vessella. "The Optimal Stability Estimate for some Ill-posed Cauchy Problems for a Parabolic Equation." Mathematical Methods in the Applied Sciences 10.5 (1988): 575-583.
BibTeX: Download