Nawaz Q, Ur Rehman MA, Roether J, Yufei L, Grünewald A, Detsch R, Boccaccini AR (2019)
Publication Type: Journal article
Publication year: 2019
DOI: 10.1016/j.ceramint.2019.04.179
We investigated the bioactivity and cytocompatibility of 45S5 bioactive glass (BG) based scaffolds coated with a composite layer formed by gelatin and manganese doped mesoporous bioactive glass nanoparticles (Mn-MBGNs). The scaffolds were prepared using the foam replica method, and they were further coated with Mn-MBGNs/gelatin via dip coating. The synthesized scaffolds were characterized in relation to morphology, porosity, mechanical stability, bioactivity and cell biology behavior using osteoblast-like (MG-63) cells. The scaffolds were highly porous with interconnected porosity, and a suitable pore structure was maintained even after the Mn-MBGNs/gelatin coating. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of Mn-MBGNs in the coatings. Moreover, the presence of gelatin was confirmed by Fourier transform infrared spectroscopy (FTIR). The coated scaffolds exhibited in-vitro bioactivity in simulated body fluid comparable to that of uncoated BG scaffolds. Finally, Mn-MBGNs/gelatin coated scaffolds were shown to be non-cytotoxic to MG-63 cells. Hence, the results presented here confirm that the novel Mn containing scaffolds can be considered in the field of biologically active ion releasing scaffolds for bone tissue engineering applications.
APA:
Nawaz, Q., Ur Rehman, M.A., Roether, J., Yufei, L., Grünewald, A., Detsch, R., & Boccaccini, A.R. (2019). Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. Ceramics International. https://doi.org/10.1016/j.ceramint.2019.04.179
MLA:
Nawaz, Qaisar, et al. "Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating." Ceramics International (2019).
BibTeX: Download