Israel GL, Belfiore A, Stella L, Esposito P, Casella P, De Luca A, Marelli M, Papitto A, Perri M, Puccetti S, Rodriguez Castillo GA, Salvetti D, Tiengo A, Zampieri L, D'Agostino D, Greiner J, Haberl F, Novara G, Salvaterra R, Turolla R, Watson M, Wilms J, Wolter A (2017)
Publication Status: Published
Publication Type: Journal article
Publication year: 2017
Publisher: AMER ASSOC ADVANCEMENT SCIENCE
Book Volume: 355
Pages Range: 817-819
Journal Issue: 6327
Ultraluminous x-ray sources (ULXs) in nearby galaxies shine brighter than any x-ray source in our Galaxy. ULXs are usually modeled as stellar-mass black holes (BHs) accreting at very high rates or intermediate-mass BHs. We present observations showing that NGC 5907 ULX is instead an x-ray accreting neutron star (NS) with a spin period evolving from 1.43 seconds in 2003 to 1.13 seconds in 2014. It has an isotropic peak luminosity of similar to 1000 times the Eddington limit for a NS at 17.1 megaparsec. Standard accretion models fail to explain its luminosity, even assuming beamed emission, but a strong multipolar magnetic field can describe its properties. These findings suggest that other extreme ULXs (x-ray luminosity >= 1041 erg second(-1)) might harbor NSs.
APA:
Israel, G.L., Belfiore, A., Stella, L., Esposito, P., Casella, P., De Luca, A.,... Wolter, A. (2017). An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907. Science, 355(6327), 817-819. https://doi.org/10.1126/science.aai8635
MLA:
Israel, Gian Luca, et al. "An accreting pulsar with extreme properties drives an ultraluminous x-ray source in NGC 5907." Science 355.6327 (2017): 817-819.
BibTeX: Download