Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania

Colcord DE, Shilling AM, Freeman KH, Njau JK, Stanistreet IG, Stollhofen H, Schick KD, Toth N, Brassell SC (2019)


Publication Language: English

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2019

Journal

Publisher: Elsevier B.V.

Book Volume: 524

Pages Range: 250-261

DOI: 10.1016/j.palaeo.2019.04.001

Abstract

Several hypotheses invoke climatic variability as a driving force for hominin evolution. Thus, high-resolution
records of climate and environmental variability from anthropologically significant locations can help test these
hypotheses. Sedimentary sequences recovered by the Olduvai Gorge Coring Project (OGCP) help evaluate climatic and environmental changes at Olduvai Gorge, Tanzania through the analyses of various biogeochemical proxies. The stratigraphic sequence of OGCP Core 2A can be correlated with horizons associated with hominins and is chronologically constrained by distinctive dated horizons, such as the Bed I Basalt and Tuff IB. The lacustrine interval from 76.6 to 86.9m depth is ideally suited for high-resolution analyses of biogeochemical proxies as it is rich in organic carbon (> 1%TOC). The hydrogen isotopic composition of nC31 in this interval of OGCP Core 2A records the effects of precession-driven wet-dry cycles on the terrestrial environment that led to alternations between woodland and grassland ecosystems, comparable to those documented by previous investigations of outcrop analogues at Olduvai. Here, we examine stratigraphic variations in the abundance of biomarkers (C28 steradienes, C17 and C23 n-alkanes, C27 and C28 A-norsteranes, fern-8-ene, and chromans) derived from aquatic organisms (algae, cyanobacteria, sponges, macrophytes, etc.) to determine the response of Paleolake Olduvai to climate variability. In general, these aquatic biomarkers reflect the productivity of the lake environment and exhibit the same precession-driven wet-dry cycles recorded by terrestrial biogeochemical signatures. However, they also provide evidence of abrupt (< ~300 yr) changes in lake level and corresponding aquatic communities superimposed on the longer-term Milankovitch cycles. Thus, evidence for climatic variability is manifested through the pacing and intensity of changes in both terrestrial and aquatic ecosystems, but the different rates of the responses on land and in the aquatic environment potentially had a complex influence on water and food resources that were important factors for hominin habitation and evolution.

Authors with CRIS profile

Related research project(s)

Involved external institutions

How to cite

APA:

Colcord, D.E., Shilling, A.M., Freeman, K.H., Njau, J.K., Stanistreet, I.G., Stollhofen, H.,... Brassell, S.C. (2019). Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 250-261. https://doi.org/10.1016/j.palaeo.2019.04.001

MLA:

Colcord, Devon E., et al. "Aquatic biomarkers record Pleistocene environmental changes at Paleolake Olduvai, Tanzania." Palaeogeography, Palaeoclimatology, Palaeoecology 524 (2019): 250-261.

BibTeX: Download