Gahn M, Neuss-Radu M (2016)
Publication Status: Published
Publication Type: Journal article, Original article
Publication year: 2016
Publisher: Babes-Bolyai University
Book Volume: 61
Pages Range: 279-290
Journal Issue: 3
URI: https://www.scopus.com/record/display.uri?eid=2-s2.0-84990858694&origin=inward
We give a characterization of relatively compact sets $F$ in $L^p(\Omega,B)$ for $p\in [1,\infty)$, $B$ a Banach-space, and $\Omega \subset \R^n$. This is a generalization of the results obtained in \cite{Simon} for the space $L^p((0,T),B)$ with $T>0$, first to rectangles $\Omega =(a,b) \subset \R^n$ and, under additional conditions, to arbitrary open and bounded subsets of $\R^n$. An application of the main compactness result to a problem arising in homogenization of processes on periodic surfaces is given.
APA:
Gahn, M., & Neuss-Radu, M. (2016). A characterization of relatively compact sets in Lp(Ω,B). Studia Universitatis Babeș-Bolyai Mathematica, 61(3), 279-290.
MLA:
Gahn, Markus, and Maria Neuss-Radu. "A characterization of relatively compact sets in Lp(Ω,B)." Studia Universitatis Babeș-Bolyai Mathematica 61.3 (2016): 279-290.
BibTeX: Download