Kozak M, McNeur J, Schönenberger N, Illmer J, Li A, Tafel A, Yousefi P, Eckstein T, Hommelhoff P (2018)
Publication Language: English
Publication Type: Journal article, Letter
Publication year: 2018
Book Volume: 124
Article Number: 023104
URI: https://arxiv.org/abs/1805.07402
DOI: 10.1063/1.5032093
In this paper, we describe an ultrafast scanning electron microscope setup developed for the research of inelastic scattering of electrons at optical near-fields of periodic dielectric nanostructures. Electron emission from the Schottky cathode is controlled by ultraviolet femtosecond laser pulses. The electron pulse duration at the interaction site is characterized via cross-correlation of the electrons with an infrared laser pulse that excites a synchronous periodic near-field on the surface of a silicon nanostructure. The lower limit of 410 fs is found in the regime of a single electron per pulse. The role of pulse broadening due to Coulomb interaction in multielectron pulses is investigated. The setup is used to demonstrate an increase in the interaction distance between the electrons and the optical near-fields by introducing a pulse-front-tilt to the infrared laser beam. Furthermore, we show the dependence of the final electron spectra on the resonance condition between the phase velocity of the optical near-field and the electron propagation velocity. The resonance is controlled by adjusting the initial electron energy/velocity and by introducing a linear chirp to the structure period allowing the increase of the final electron energy gain up to a demonstrated value of 3.8 keV.
APA:
Kozak, M., McNeur, J., Schönenberger, N., Illmer, J., Li, A., Tafel, A.,... Hommelhoff, P. (2018). Ultrafast scanning electron microscope applied for studying the interaction between free electrons and optical near-fields of periodic nanostructures. Journal of Applied Physics, 124. https://doi.org/10.1063/1.5032093
MLA:
Kozak, Martin, et al. "Ultrafast scanning electron microscope applied for studying the interaction between free electrons and optical near-fields of periodic nanostructures." Journal of Applied Physics 124 (2018).
BibTeX: Download