Burian M, Karner C, Yarema M, Heiß W, Amenitsch H, Dellago C, Lechner RT (2018)
Publication Language: English
Publication Status: Published
Publication Type: Journal article, Original article
Publication year: 2018
Publisher: Wiley-VCH Verlag
Book Volume: 30
Article Number: 1802078
Journal Issue: 32
When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
APA:
Burian, M., Karner, C., Yarema, M., Heiß, W., Amenitsch, H., Dellago, C., & Lechner, R.T. (2018). A Shape-Induced Orientation Phase within 3D Nanocrystal Solids. Advanced Materials, 30(32). https://doi.org/10.1002/adma.201802078
MLA:
Burian, Max, et al. "A Shape-Induced Orientation Phase within 3D Nanocrystal Solids." Advanced Materials 30.32 (2018).
BibTeX: Download