FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation

Jaust A, Reuter B, Aizinger V, Schütz J, Knabner P (2018)


Publication Language: English

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2018

Journal

Publisher: Elsevier Ltd

Book Volume: 75

Pages Range: 4505-4533

Journal Issue: 12

URI: https://www1.am.uni-erlangen.de/research/publications/Jahr_2018/2018_JaustReuterAizingerSchuetzKn_FestungAMatlabGnuPartIIIHDG

DOI: 10.1016/j.camwa.2018.03.045

Abstract

The third paper in our series on open source MATLAB/GNU Octave implementation of the discontinuous Galerkin (DG) method(s) focuses on a hybridized formulation. The main aim of this ongoing work is to develop rapid prototyping techniques covering a range of standard DG methodologies and suitable for small to medium sized applications. Our FESTUNG package relies on fully vectorized matrix/vector operations throughout, and all details of the implementation are fully documented. Once again, great care is taken to maintain a direct mapping between discretization terms and code routines as well as to ensure full compatibility to GNU Octave. The current work formulates a hybridized DG scheme for a linear advection problem, describes hybrid approximation spaces on the mesh skeleton, and compares the performance of this discretization to the standard (element-based) DG method for different polynomial orders.

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Jaust, A., Reuter, B., Aizinger, V., Schütz, J., & Knabner, P. (2018). FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation. Computers & Mathematics with Applications, 75(12), 4505-4533. https://doi.org/10.1016/j.camwa.2018.03.045

MLA:

Jaust, Alexander, et al. "FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method. Part III: Hybridized discontinuous Galerkin (HDG) formulation." Computers & Mathematics with Applications 75.12 (2018): 4505-4533.

BibTeX: Download