Optimal Control in Matrix-Valued Coefficients for Nonlinear Monotone Problems: Optimality Conditions I

Kogut PI, Kupenko OP, Leugering G (2015)


Publication Status: Published

Publication Type: Journal article

Publication year: 2015

Journal

Publisher: European Mathematical Society

Book Volume: 34

Pages Range: 85-108

Journal Issue: 1

DOI: 10.4171/ZAA/1530

Abstract

In this article we study an optimal control problem for a nonlinear monotone Dirichlet problem where the controls are taken as matrix-valued coefficients in L-infinity (Omega; R-NxN). For the exemplary case of a tracking cost functional, we derive first order optimality conditions. This first part is concerned with the general case of matrix-valued coefficients under some hypothesis, while the second part focuses on the special class of diagonal matrices.

Authors with CRIS profile

Additional Organisation(s)

Involved external institutions

How to cite

APA:

Kogut, P.I., Kupenko, O.P., & Leugering, G. (2015). Optimal Control in Matrix-Valued Coefficients for Nonlinear Monotone Problems: Optimality Conditions I. Zeitschrift für Analysis und ihre Anwendungen, 34(1), 85-108. https://doi.org/10.4171/ZAA/1530

MLA:

Kogut, Peter I., Ol'Ga P. Kupenko, and Günter Leugering. "Optimal Control in Matrix-Valued Coefficients for Nonlinear Monotone Problems: Optimality Conditions I." Zeitschrift für Analysis und ihre Anwendungen 34.1 (2015): 85-108.

BibTeX: Download