Fabrication and characterization of glassy carbon membranes

Koval Y, Geworski A, Gieb K, Lazareva I, Müller P (2014)

Publication Language: English

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2014


Publisher: AVS Science and Technology Society

Book Volume: 32

Article Number: 042001

Journal Issue: 4

DOI: 10.1116/1.4890008


In this work, the authors focus on a method to fabricate arbitrary shaped free standing membranes with a thickness less than 20nm, produced from different polymers with the help of low-energy ion irradiation. The authors analyze the thickness of the membranes and its dependence on the details of the irradiation process. In order to tune the properties of the suspended membranes, an additional ion irradiation step has been used. This step is applied to already suspended membranes and leads to several effects, such as heating, shape transformation, etc. These effects were analyzed for irradiation with Ar and He ions. The authors have found that He irradiation has a significant advantage over Ar irradiation providing strained, smooth, and homogeneous membranes. In order to measure the electrical properties of the suspended membranes, the authors invented a new method to contact the membranes. These low resistance contacts can be achieved as the authors describe in detail. The membranes electrical properties after He ion irradiation at different temperatures are presented. Finally, the authors analyze Raman spectra, and thermal and electrical conductivity of the highly conducting membranes. The authors conclude that after high temperature He ion irradiation the membranes consist of material similar in properties to the glassy carbon obtained by pyrolysis. However, this method does not require high temperature pyrolysis step, which makes integration with on-chip electronics more feasible. © 2014 American Vacuum Society.

Authors with CRIS profile

How to cite


Koval, Y., Geworski, A., Gieb, K., Lazareva, I., & Müller, P. (2014). Fabrication and characterization of glassy carbon membranes. Journal of Vacuum Science & Technology B, 32(4). https://dx.doi.org/10.1116/1.4890008


Koval, Yury, et al. "Fabrication and characterization of glassy carbon membranes." Journal of Vacuum Science & Technology B 32.4 (2014).

BibTeX: Download