Reflection positivity and conformal symmetry

Neeb KH, Olafsson G (2014)


Publication Type: Journal article, Original article

Publication year: 2014

Journal

Publisher: Elsevier

Book Volume: 206

Pages Range: 2174 - 2224

Journal Issue: 4

DOI: 10.1016/j.jfa.2013.10.030

Abstract

A reflection positive Hilbert space is a triple (E,E+,θ), where E is a Hilbert space, θ   a unitary involution and E+ a closed subspace on which the hermitian form 〈v,w〉θ:=〈θv,w〉 is positive semidefinite. For a triple (G,τ,S), where G is a Lie group, τ an involutive automorphism of G and S   a subsemigroup invariant under the involution s↦s=τ(s)−1, a unitary representation π of G   on (E,E+,θ) is called reflection positive if θπ(g)θ=π(τ(g)) and π(S)E+⊆E+. This is the first in a series of papers in which we develop a new and systematic approach to reflection positive representations based on reflection positive distributions and reflection positive distribution vectors. This approach is most natural to obtain classification results, in particular in the abelian case. Among the tools we develop is a generalization of the Bochner–Schwartz Theorem to positive definite distributions on open convex cones. We further illustrate our techniques with a non-abelian example by constructing reflection positive distribution vectors for complementary series representations of the conformal group View the MathML source of the sphere Sn.

 

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Neeb, K.H., & Olafsson, G. (2014). Reflection positivity and conformal symmetry. Journal of Functional Analysis, 206(4), 2174 - 2224. https://doi.org/10.1016/j.jfa.2013.10.030

MLA:

Neeb, Karl Hermann, and Gestur Olafsson. "Reflection positivity and conformal symmetry." Journal of Functional Analysis 206.4 (2014): 2174 - 2224.

BibTeX: Download