Learning Analytics and Survey Data Integration in Workload Research

Samoilova E, Keusch F, Wolbring T (2017)


Publication Language: English

Publication Type: Journal article, Original article

Publication year: 2017

Journal

Book Volume: 12

Pages Range: 65 - 78

Journal Issue: 2

DOI: 10.3217/zfhe-12-01/04

Abstract

While Learning Analytics (LA) has a lot of potential, educators sometimes doubt whether it is worth to invest in the analysis of LA and whether its use yields additional insights. Drawing on data from a pilot study, we illustrate an application of LA for the evaluation of student workload in online or blended learning courses. Although measuring student workload is essential for optimizing learning, workload research is still under development. The study compares results provided by two data sources: viewing activity logs and a weekly evaluation survey. The results indicate that self-reported data provide higher estimates of workload than LA. Moreover, the two measures are only weakly correlated. The results should be replicated with a larger sample size, different sub-populations, and in different contexts.

Authors with CRIS profile

How to cite

APA:

Samoilova, E., Keusch, F., & Wolbring, T. (2017). Learning Analytics and Survey Data Integration in Workload Research. Zeitschrift für Hochschulentwicklung, 12(2), 65 - 78. https://doi.org/10.3217/zfhe-12-01/04

MLA:

Samoilova, Evgenia, Florian Keusch, and Tobias Wolbring. "Learning Analytics and Survey Data Integration in Workload Research." Zeitschrift für Hochschulentwicklung 12.2 (2017): 65 - 78.

BibTeX: Download