Duzaar F, Mingione G (2010)
Publication Type: Journal article
Publication year: 2010
Publisher: Elsevier Masson / Institute Henri Poincaré
Book Volume: 27
Pages Range: 1361-1396
DOI: 10.1016/j.anihpc.2010.07.002
We start presenting an L∞-gradient bound for solutions to non-homogeneous p-Laplacean type systems and equations, via suitable non-linear potentials of the right-hand side. Such a bound implies a Lorentz space characterization of Lipschitz regularity of solutions which surprisingly turns out to be independent of p, and that reveals to be the same classical one for the standard Laplacean operator. In turn, the a priori estimates derived imply the existence of locally Lipschitz regular solutions to certain degenerate systems with critical growth of the type arising when considering geometric analysis problems.
APA:
Duzaar, F., & Mingione, G. (2010). Local Lipschitz regularity for degenerate elliptic systems. Annales de l'Institut Henri Poincaré - Analyse Non Linéaire, 27, 1361-1396. https://doi.org/10.1016/j.anihpc.2010.07.002
MLA:
Duzaar, Frank, and Giuseppe Mingione. "Local Lipschitz regularity for degenerate elliptic systems." Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 27 (2010): 1361-1396.
BibTeX: Download