Numerical study of plasmonic absorption enhancement in semiconductor absorbers by metallic nanoparticles

Hornich J, Pflaum C, Brabec C, Forberich K (2016)


Publication Language: English

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2016

Journal

Book Volume: 120

Article Number: 113102

Journal Issue: 11

DOI: 10.1063/1.4962459

Abstract

We are studying the influence of spherical silver nanoparticles (AgNP) in absorbing media by numerically solving the Maxwell's equations. Our simulations show that the near-field absorption enhancement introduced by a single AgNP in the surrounding medium is increasing with the growing particle diameter. However, we observe that the relative absorption per particle volume is on a similar level for different particle sizes; hence, different numbers of particles with the same total volume yield the same near-field absorption enhancement. We also investigate the effect of non-absorbing shells around the AgNP with the conclusion that even very thin shells suppress the beneficial effects of the particles noticeably. Additionally, we include AgNP in an organic solar cell at different vertical positions with different particle spacings and observe the beneficial effects for small AgNP and the scattering dependent performance for larger particles.

Authors with CRIS profile

Additional Organisation(s)

How to cite

APA:

Hornich, J., Pflaum, C., Brabec, C., & Forberich, K. (2016). Numerical study of plasmonic absorption enhancement in semiconductor absorbers by metallic nanoparticles. Journal of Applied Physics, 120(11). https://doi.org/10.1063/1.4962459

MLA:

Hornich, Julian, et al. "Numerical study of plasmonic absorption enhancement in semiconductor absorbers by metallic nanoparticles." Journal of Applied Physics 120.11 (2016).

BibTeX: Download