Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system

Ray N, Muntean A, Knabner P (2012)

Publication Status: Published

Publication Type: Journal article, Original article

Publication year: 2012


Publisher: Elsevier

Book Volume: 390

Pages Range: 374-393

Journal Issue: 1

URI: https://www1.am.uni-erlangen.de/research/publications/Jahr_2012/2012_RayMunteanKn_RigHomoOfStokesNernstPlanckPoissSystem

DOI: 10.1016/j.jmaa.2012.01.052


We perform the periodic homogenization (i.e ε → 0) of a non-stationary Stokes-Nernst-Planck-Poisson system using two-scale convergence, where ε is a suitable scale parameter. The objective is to investigate the influence of different boundary conditions and variable choices of scalings in ε of the microscopic system of partial differential equations on the structure of the (upscaled) limit model equations. Due to the specific nonlinear coupling of the underlying equations, special attention has to be paid when passing to the limit in the electrostatic drift term. As a direct result of the homogenization procedure, various classes of upscaled model equations are obtained. © 2012 Elsevier Inc.

Authors with CRIS profile

Involved external institutions

How to cite


Ray, N., Muntean, A., & Knabner, P. (2012). Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system. Journal of Mathematical Analysis and Applications, 390(1), 374-393. https://doi.org/10.1016/j.jmaa.2012.01.052


Ray, Nadja, Adrian Muntean, and Peter Knabner. "Rigorous homogenization of a Stokes-Nernst-Planck-Poisson system." Journal of Mathematical Analysis and Applications 390.1 (2012): 374-393.

BibTeX: Download