Meyer-Wegener K, Guhlemann S, Petersohn U (2017)
Publication Language: English
Publication Type: Conference contribution, Original article
Publication year: 2017
Publisher: Gesellschaft für Informatik
Series: Lecture Notes in Informatics
City/Town: Bonn
Book Volume: P-265
Pages Range: 485-504
Conference Proceedings Title: Datenbanksysteme für Business, Technologie und Web
ISBN: 978-3-88579-659-6
URI: http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/F8-12-22/paper_web.pdf
Open Access Link: https://dl.gi.de/handle/20.500.12116/648;jsessionid=56A71ECF816468CF159123700F5759A8
A topic of growing interest in a wide range of domains is the similarity of data entries. Data sets of genome sequences, text corpora, complex production information, and multimedia content are typically large and unstructured, and it is expensive to compute similarities in them. The only common denominator a data structure for efficient similarity search can rely on are the metric axioms. One such data structure for efficient similarity search in metric spaces is the M-Tree, along with a number of compatible extensions (e.g. Slim-Tree, Bulk Loaded M-Tree, multiway insertion M-Tree, M^2-Tree, etc.). The M-Tree family uses common algorithms for the k-nearest-neighbor and range search. In this paper we present new algorithms for these tasks to considerably improve retrieval performance of all M-Tree-compatible data structures.
APA:
Meyer-Wegener, K., Guhlemann, S., & Petersohn, U. (2017). Optimizing Similarity Search in the M-Tree. In Mitschang, B., Nicklas, D., Leymann, F., Schöning, H., Herschel, M., Teubner, J., Härder, T., Kopp, O., Wieland, M. (Eds.), Datenbanksysteme für Business, Technologie und Web (pp. 485-504). Stuttgart, DE: Bonn: Gesellschaft für Informatik.
MLA:
Meyer-Wegener, Klaus, Steffen Guhlemann, and Uwe Petersohn. "Optimizing Similarity Search in the M-Tree." Proceedings of the BTW 2017, Stuttgart Ed. Mitschang, B., Nicklas, D., Leymann, F., Schöning, H., Herschel, M., Teubner, J., Härder, T., Kopp, O., Wieland, M., Bonn: Gesellschaft für Informatik, 2017. 485-504.
BibTeX: Download