Preuster P, Papp C, Wasserscheid P (2017)
Publication Status: Published
Publication Type: Journal article, Original article
Publication year: 2017
Publisher: American Chemical Society
Book Volume: 50
Pages Range: 74-85
Journal Issue: 1
DOI: 10.1021/acs.accounts.6b00474
The need to drastically reduce CO2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO2 or N2, hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.
APA:
Preuster, P., Papp, C., & Wasserscheid, P. (2017). Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Accounts of Chemical Research, 50(1), 74-85. https://doi.org/10.1021/acs.accounts.6b00474
MLA:
Preuster, Patrick, Christian Papp, and Peter Wasserscheid. "Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy." Accounts of Chemical Research 50.1 (2017): 74-85.
BibTeX: Download