Neeb KH, Wagemann F (2003)
Publication Type: Journal article, Original article
Publication year: 2003
Publisher: Springer Verlag (Germany)
Book Volume: 112
Pages Range: 441-458
Journal Issue: 4
DOI: 10.1007/s00229-003-0409-x
We identify the universal differential module Ω1(A) for the Fréchet algebra A of holomorphic functions on a complex Stein manifold X, and more generally on a Riemannian domain R over X and for the algebra of germs of holomorphic functions on a compact subset K⊂ℂ n . It turns out to be isomorphic to the Fréchet space of holomorphic 1-forms on X, resp. R, resp. to the space Ω1(K) of germs of holomorphic 1-forms in K. This determines the center of the universal central extension of the Lie algebra 𝒪(R,𝔨 of holomorphic maps from R to a finite-dimensional simple complex Lie algebra 𝔨.
APA:
Neeb, K.H., & Wagemann, F. (2003). The universal central extension of the holomorphic current algebra. Manuscripta Mathematica, 112(4), 441-458. https://doi.org/10.1007/s00229-003-0409-x
MLA:
Neeb, Karl Hermann, and Friedrich Wagemann. "The universal central extension of the holomorphic current algebra." Manuscripta Mathematica 112.4 (2003): 441-458.
BibTeX: Download