A posteriori error control for fully discrete Crank-Nicolson schemes

Bänsch E, Karakatsani F, Makridakis C (2012)


Publication Type: Journal article, Original article

Publication year: 2012

Journal

Publisher: Society for Industrial and Applied Mathematics

Book Volume: 50

Pages Range: 2845-2872

Journal Issue: 6

DOI: 10.1137/110839424

Abstract

We derive residual-based a posteriori error estimates of optimal order for fully discrete approximations for linear parabolic problems. The time discretization uses the Crank--Nicolson method, and the space discretization uses finite element spaces that are allowed to change in time. The main tool in our analysis is the comparison with an appropriate reconstruction of the discrete solution, which is introduced in the present paper.


Read More: http://epubs.siam.org/doi/abs/10.1137/110839424

 

Authors with CRIS profile

Involved external institutions

How to cite

APA:

Bänsch, E., Karakatsani, F., & Makridakis, C. (2012). A posteriori error control for fully discrete Crank-Nicolson schemes. SIAM Journal on Numerical Analysis, 50(6), 2845-2872. https://doi.org/10.1137/110839424

MLA:

Bänsch, Eberhard, F. Karakatsani, and Charalambos Makridakis. "A posteriori error control for fully discrete Crank-Nicolson schemes." SIAM Journal on Numerical Analysis 50.6 (2012): 2845-2872.

BibTeX: Download