Linear resonance in viscous films on inclined wavy planes

Wierschem A, Bontozoglou V, Heining C, Uecker H, Aksel N (2008)


Publication Type: Journal article, Original article

Publication year: 2008

Journal

Publisher: Elsevier

Book Volume: 34

Pages Range: 580-589

Journal Issue: 6

DOI: 10.1016/j.ijmultiphaseflow.2007.12.001

Abstract

We study viscous gravity-driven films flowing over periodically undulated substrates. Linear analysis describes steady flow along small amplitude corrugations for films of arbitrary thickness. Solving the resulting system numerically, we demonstrate resonance (or, possibly, near resonance) and identify different behaviours for thin, intermediate and thick films. Approximating the leading-order velocity profile by the free surface value allows for an analytic solution, which - in the limit of high Reynolds numbers - recovers the different regimes and reveals the relevant physical mechanisms. Our results support the view that the resonance is associated with an interaction of the undulated film with capillary-gravity waves travelling against the mean flow direction. As a consequence, the resonance peak is attained under conditions that render the wave phase velocity equal to zero in the laboratory reference frame, and thus permit direct exchange of energy between the steadily deformed film and the free surface. © 2008 Elsevier Ltd. All rights reserved.

Authors with CRIS profile

How to cite

APA:

Wierschem, A., Bontozoglou, V., Heining, C., Uecker, H., & Aksel, N. (2008). Linear resonance in viscous films on inclined wavy planes. International Journal of Multiphase Flow, 34(6), 580-589. https://doi.org/10.1016/j.ijmultiphaseflow.2007.12.001

MLA:

Wierschem, Andreas, et al. "Linear resonance in viscous films on inclined wavy planes." International Journal of Multiphase Flow 34.6 (2008): 580-589.

BibTeX: Download