Neeb KH, Seppänen H (2011)
Publication Type: Journal article, Original article
Publication year: 2011
Publisher: Walter de Gruyter
Book Volume: 655
Pages Range: 165-187
Let $\cA$ be a commutative unital Banach algebra, $\g$ be a semisimple complex Lie algebra and $G(\cA)$ be the 1-connected Banach--Lie group with Lie algebra $\g \otimes \cA$. Then there is a natural concept of a parabolic subgroup $P(\cA)$ of $G(\cA)$ and we obtain generalizations $X(\cA) := G(\cA)/P(\cA)$ of the generalized flag manifolds. In this note we provide an explicit description of all homogeneous holomorphic line bundles over $X(\cA)$ with non-zero holomorphic sections. In particular, we show that all these line bundles are tensor products of pullbacks of line bundles over $X(\C)$ by evaluation maps.
For the special case where $\cA$ is a
APA:
Neeb, K.H., & Seppänen, H. (2011). Borel-Weil Theory for Groups over Commutative Banach-Algebras. Journal für die reine und angewandte Mathematik, 655, 165-187.
MLA:
Neeb, Karl Hermann, and Henrik Seppänen. "Borel-Weil Theory for Groups over Commutative Banach-Algebras." Journal für die reine und angewandte Mathematik 655 (2011): 165-187.
BibTeX: Download