45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene

Fabbri P, Valentini L, Hum J, Detsch R, Boccaccini AR (2013)

Publication Type: Journal article

Publication year: 2013


Publisher: Elsevier

Book Volume: 33

Pages Range: 3592-3600

Journal Issue: 7

DOI: 10.1016/j.msec.2013.04.028


Highly porous 45S5 Bioglass®-based scaffolds fabricated by a foam replication technique were coated with electrically conductive organic-inorganic hybrid layers containing graphene by a solution method. α,ω- Triethoxysilane terminated poly (ethylene glycol) and tetraethoxysilane were used as the precursors of the organic-inorganic hybrid coatings, that contained 1.5 wt.% of homogeneously dispersed graphene nanoplatelets. The resulting coated scaffolds retained their original high porosity and interconnected pore structure after coating. The presence of graphene did not impair the bioactivity of the scaffolds in simulated body fluid. Initial tests carried out using MG-63 cells demonstrated that both uncoated scaffolds and scaffolds coated with organic/inorganic hybrids containing graphene offered the cultured cells an adequate surface for cell attachment, spreading and expression of extracellular matrix. The results showed that scaffolds coated with graphene are biocompatible and they can support cellular activity. The electrical conductivity introduced by the coating might have the potential to increase tissue growth when cell culture is carried out under an applied electric field. © 2013 Elsevier B.V.

Authors with CRIS profile

Involved external institutions

How to cite


Fabbri, P., Valentini, L., Hum, J., Detsch, R., & Boccaccini, A.R. (2013). 45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene. Materials Science and Engineering C, 33(7), 3592-3600. https://dx.doi.org/10.1016/j.msec.2013.04.028


Fabbri, Paola, et al. "45S5 Bioglass®-derived scaffolds coated with organic-inorganic hybrids containing graphene." Materials Science and Engineering C 33.7 (2013): 3592-3600.

BibTeX: Download