Schmitt M, Wanka R (2013)
Publication Type: Journal article
Publication year: 2013
Publisher: Elsevier
Book Volume: 113
Pages Range: 337-344
DOI: 10.1016/j.ipl.2013.02.013
We present an improvement on Thurley's recent randomized approximation scheme for #k-SAT where the task is to count the number of satisfying truth assignments of a Boolean function Φ given as an n-variable k-CNF. We introduce a novel way to identify independent substructures of Φ and can therefore reduce the size of the search space considerably. Our randomized algorithm works for any k. For #3-SAT, it runs in time O(ε- 2×1.51426n), for #4-SAT, it runs in time O(ε-2×1.60816n), with error bound ε. © 2013 Elsevier B.V. All rights reserved.
APA:
Schmitt, M., & Wanka, R. (2013). Exploiting Independent Subformulas: A Faster Approximation Scheme for #k-SAT. Information Processing Letters, 113, 337-344. https://doi.org/10.1016/j.ipl.2013.02.013
MLA:
Schmitt, Manuel, and Rolf Wanka. "Exploiting Independent Subformulas: A Faster Approximation Scheme for #k-SAT." Information Processing Letters 113 (2013): 337-344.
BibTeX: Download