Bögelein V, Duzaar F, Mingione G (2010)
Publication Type: Journal article
Publication year: 2010
Publisher: Elsevier Masson / Institute Henri Poincaré
Book Volume: 27
Pages Range: 201-255
Journal Issue: 1
DOI: 10.1016/j.anihpc.2009.09.003
This is the first part of a work aimed at establishing that for solutions to Cauchy-Dirichlet problems involving general non-linear systems of parabolic type, almost every parabolic boundary point is a Hölder continuity point for the spatial gradient of solutions. Here we develop the basic necessary and sufficient condition for establishing the regular nature of a boundary point.
APA:
Bögelein, V., Duzaar, F., & Mingione, G. (2010). The boundary regularity of non-linear parabolic systems I. Annales de l'Institut Henri Poincaré - Analyse Non Linéaire, 27(1), 201-255. https://doi.org/10.1016/j.anihpc.2009.09.003
MLA:
Bögelein, Verena, Frank Duzaar, and Giuseppe Mingione. "The boundary regularity of non-linear parabolic systems I." Annales de l'Institut Henri Poincaré - Analyse Non Linéaire 27.1 (2010): 201-255.
BibTeX: Download